# 基本概念习题

# 对易关系证明

\quad 利用+\ket{+}\ket{-} 的正交性证明:

[S^i,Sj^]=iϵijkS^k,{S^i,S^j}=(22)δij[\hat{S}_i,\hat{S_j}]=i\hbar\epsilon_{ijk}\hat{S}_k\quad,\quad\{\hat{S}_i,\hat{S}_j\}=(\frac{\hbar^2}{2})\delta_{ij}

其中

S^x=2(+++)S^y=i2(+++)S^z=2(++)\begin{aligned} \hat{S}_x &= \frac{\hbar}{2}(\ket{+}\bra{-}+\ket{-}\bra{+}) \\ \hat{S}_y &= \frac{i\hbar}{2}(-\ket{+}\bra{-}+\ket{-}\bra{+}) \\ \hat{S}_z &= \frac{\hbar}{2}(\ket{+}\bra{+}-\ket{-}\bra{-}) \end{aligned}

证明
\quad 利用+\ket{+}\ket{-} 为基底,可以将算符如下矩阵形式:

S^x=2(0110);S^y=2(0ii0);S^z=2(1001)\hat{S}_x = \frac{\hbar}{2}\left(\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}\right)\quad;\quad \hat{S}_y = \frac{\hbar}{2}\left(\begin{matrix} 0 & -i \\ i & 0 \end{matrix}\right)\quad;\quad \hat{S}_z = \frac{\hbar}{2}\left(\begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix}\right)

因此

[S^x,S^y]=24[(0110)(0ii0)(0ii0)(0110)]=22(1001)=iS^z[\hat{S}_x,\hat{S}_y] = \frac{\hbar^2}{4}\left[\left(\begin{matrix}0 & 1 \\ 1 & 0\end{matrix}\right)\left(\begin{matrix}0 & -i \\ i & 0\end{matrix}\right)-\left(\begin{matrix}0 & -i \\ i & 0\end{matrix}\right)\left(\begin{matrix}0 & 1 \\ 1 & 0\end{matrix}\right)\right] = \frac{\hbar^2}{2}\left(\begin{matrix}1 & 0 \\ 0 & -1\end{matrix}\right) = i\hbar\hat{S}_z

{S^x,S^y}=24[(0110)(0ii0)+(0ii0)(0110)]=22\{\hat{S}_x,\hat{S}_y\} = \frac{\hbar^2}{4}\left[\left(\begin{matrix}0 & 1 \\ 1 & 0\end{matrix}\right)\left(\begin{matrix}0 & -i \\ i & 0\end{matrix}\right)+\left(\begin{matrix}0 & -i \\ i & 0\end{matrix}\right)\left(\begin{matrix}0 & 1 \\ 1 & 0\end{matrix}\right)\right] = \frac{\hbar^2}{2}

同理依次计算,最终可证明:

[S^i,Sj^]=iϵijkS^k,{S^i,S^j}=(22)δij[\hat{S}_i,\hat{S_j}]=i\hbar\epsilon_{ijk}\hat{S}_k\quad,\quad\{\hat{S}_i,\hat{S}_j\}=(\frac{\hbar^2}{2})\delta_{ij}

证毕。

# 任意方向上自旋态的表征

\quad 构造一个这样的S^n^;+\ket{\hat{S}\cdot\hat{n};+} 态,使其满足

S^n^S^n^;+=(2)S^n^;+\hat{S}\cdot\hat{n}\ket{\hat{S}\cdot\hat{n};+}=(\frac{\hbar}{2})\ket{\hat{S}\cdot\hat{n};+}

其中n^\hat{n} 由附图中所示的角度表征。把你的答案表示为+\ket{+}\ket{-} 的线性组合。
1


\quad 利用泡利表象可将S^n^\hat{S}\cdot\hat{n} 写成:

S^n^=2[nx(0110)+ny(0ii0)+nz(1001)]\hat{S}\cdot\hat{n} = \frac{\hbar}{2} \left[n_x\left(\begin{matrix}0 & 1 \\ 1 & 0\end{matrix}\right)+n_y\left(\begin{matrix}0 & -i \\ i & 0\end{matrix}\right)+n_z\left(\begin{matrix}1 & 0 \\ 0 & -1\end{matrix}\right)\right]

而态矢 S^n^;+\ket{\hat{S}\cdot\hat{n};+} 也可以写成 +\ket{+}\ket{-} 的线性叠加:

S^n^;+=c+++c=c+(10)+c(01)\ket{\hat{S}\cdot\hat{n};+} = c_+ \ket{+} + c_- \ket{-} = c_+ \left(\begin{matrix}1\\0\end{matrix}\right) + c_- \left(\begin{matrix}0\\1\end{matrix}\right)

可以这样的表征,可进行如下推导:

(S^n^)S^n^;+=2[nx(cc+)+ny(icic+)+nz(c+c)]=2(nxcinyc+nzc+nxc++inyc+nzc)=2S^n^;+=2(c+c)\begin{aligned} (\hat{S}\cdot\hat{n}) \ket{\hat{S}\cdot\hat{n};+} &= \frac{\hbar}{2} \left[ n_x \left(\begin{matrix}c_-\\c_+\end{matrix}\right) + n_y \left(\begin{matrix}-ic_-\\ic_+\end{matrix}\right) + n_z \left(\begin{matrix}c_+\\-c_-\end{matrix}\right) \right] \\\\&= \frac{\hbar}{2} \left(\begin{matrix}n_xc_--in_yc_-+n_zc_+ \\\\ n_xc_++in_yc_+-n_zc_-\end{matrix}\right) \\\\&= \frac{\hbar}{2} \ket{\hat{S}\cdot\hat{n};+} = \frac{\hbar}{2} \left(\begin{matrix}c_+\\c_-\end{matrix}\right) \end{aligned}

由上式可得:

{c+=nxcinyc+nzc+c=nxc++inyc+nzc{(1nz)c++(inynx)c=0(nx+iny)c+(1+nz)c=0\begin{cases} c_+ = n_xc_--in_yc_-+n_zc_+ \\ c_- = n_xc_++in_yc_+-n_zc_- \end{cases} \Longrightarrow \quad \begin{cases} (1-n_z)c_+ + (in_y-n_x)c_- = 0 \\ (n_x+in_y)c_+ - (1+n_z)c_- = 0 \end{cases}

再结合

nx2+ny2+nz2=1n_x^2+n_y^2+n_z^2=1

最终可解得:

{c+2=1+nz2=1+cosβ2=cos2β2c2=1nz2=1cosβ2=sin2β2\begin{cases} |c_+|^2 = \frac{1+n_z}{2} = \frac{1+\cos\beta}{2} = \cos^2\frac{\beta}{2} \\ |c_-|^2 = \frac{1-n_z}{2} = \frac{1-\cos\beta}{2} = \sin^2\frac{\beta}{2} \end{cases}

\Downarrow

{c+=cosβ2eiαc=sinβ2eiγ\begin{cases} c_+ = \cos\frac{\beta}{2} e^{i\alpha} \\ c_- = \sin\frac{\beta}{2} e^{i\gamma} \end{cases}

因此,最终可将 S^n^;+\ket{\hat{S}\cdot\hat{n};+} 构造为:

S^n^;+=cosβ2eiα++sinβ2eiγ\ket{\hat{S}\cdot\hat{n};+} = \cos\frac{\beta}{2} e^{i\alpha} \ket{+} + \sin\frac{\beta}{2} e^{i\gamma} \ket{-}

# 高斯型波函数

(a)(a) 从高斯型波包出发,即

xα=1π1/4dexp[ikxx22d2]\braket{x'|\alpha} = \frac{1}{\pi^{1/4}\sqrt{d}} \exp \left[ ikx'-\frac{x'^2}{2d^2} \right]

求:p^\hat{p} 的方差。
(b) 求动量空间波函数pα\braket{p'|\alpha},再从pα\braket{p'|\alpha} 出发,求p^\hat{p} 的方差。


\quad (a)(a) p^\hat{p} 在态矢 α\ket{\alpha} 上的平均值为

p^=αp^α=+dxdxαxxp^xxα=+dxdx[1πd]exp[ikxx22d2]exp[ikxx22d2][ixδ(xx)]=iπd+dx(ikxd2)exp[x2d2]=k\begin{aligned} \braket{\hat{p}} &= \bra{\alpha}\hat{p}\ket{\alpha} =\iint^{+\infin}_{-\infin} dx' dx'' \braket{\alpha|x'} \braket{x'|\hat{p}|x''} \braket{x''|\alpha} \\&= \iint^{+\infin}_{-\infin} dx' dx'' \left[\frac{1}{\sqrt{\pi}d}\right] \exp\left[-ikx'-\frac{x'^2}{2d^2}\right] \exp\left[ikx''-\frac{x''^2}{2d^2}\right] \left[-i\hbar\frac{\partial}{\partial x'}\delta(x'-x'')\right] \\&= \frac{i\hbar}{\sqrt{\pi}d} \int^{+\infin}_{-\infin} dx \ (-ik-\frac{x}{d^2}) \exp\left[-\frac{x^2}{d^2}\right] \\&= \hbar k \end{aligned}

上式的推导运用到了以下两个等式:

xp^x=ixδ(xx)\braket{x'|\hat{p}|x''} = -i\hbar\frac{\partial}{\partial x'}\delta(x'-x'')

+f(x)δ(xx0)dx=f(x0)\int^{+\infin}_{-\infin} f(x) \delta'(x-x_0) dx = -f'(x_0)

再计算 p^2\hat{p}^2 在态矢 α\ket{\alpha} 上的平均值:

p^2=αp^2α=+dxdxαxxp^2xxα=+dxdxdxαxxp^xxp^xxα=2πd+dxdxdxexp[ikxx22d2]exp[ikxx22d2][xδ(xx)][xδ(xx)]=2πd+dxdx(ikxd2)exp[ikxx22d2]exp[ikxx22d2][xδ(xx)]=2πd+dx(1d2k2+2ikxd2+x2d4)exp(x2d2)=22d2+2k2\begin{aligned} \braket{\hat{p}^2} &= \braket{\alpha|\hat{p}^2|\alpha} = \iint^{+\infin}_{-\infin} dx' dx'' \braket{\alpha|x'} \braket{x'|\hat{p}^2|x''} \braket{x''|\alpha} \\&= \iiint^{+\infin}_{-\infin} dx' dx'' dx''' \braket{\alpha|x'} \braket{x'|\hat{p}|x'''} \braket{x'''|\hat{p}|x''} \braket{x''|\alpha} \\&= \frac{-\hbar^2}{\sqrt{\pi}d} \iiint^{+\infin}_{-\infin} dx' dx'' dx''' \exp\left[-ikx'-\frac{x'^2}{2d^2}\right] \exp\left[ikx''-\frac{x''^2}{2d^2}\right] \\& \qquad \quad \left[\frac{\partial}{\partial x'}\delta(x'-x''')\right] \left[\frac{\partial}{\partial x'''}\delta(x'''-x'')\right] \\&= \frac{\hbar^2}{\sqrt{\pi}d} \iint^{+\infin}_{-\infin} dx'' dx''' (-ik-\frac{x'''}{d^2}) \exp\left[-ikx'''-\frac{x'''^2}{2d^2}\right] \exp\left[ikx''-\frac{x''^2}{2d^2}\right] \left[\frac{\partial}{\partial x'''}\delta(x'''-x'')\right] \\&= \frac{-\hbar^2}{\sqrt{\pi}d} \int^{+\infin}_{-\infin} dx (-\frac{1}{d^2}-k^2+2ik\frac{x}{d^2}+\frac{x^2}{d^4}) \exp(-\frac{x^2}{d^2}) \\&= \frac{\hbar^2}{2d^2} + \hbar^2k^2 \end{aligned}

最终可得 p^\hat{p} 的方差为:

(Δp^)2=p^2p^2=22d2\braket{(\Delta \hat{p})^2} = \braket{\hat{p}^2} - \braket{\hat{p}}^2 = \frac{\hbar^2}{2d^2}

\quad (b) 先求出动量空间波函数 pα\braket{p'|\alpha}

pα=+dxpxxα=+dx12πexp(ipx)(1π1/4d)exp[ikxx22d2]=12ππd+dxexp(ikxipxx22d2)=dπexp[(pk)2d222]\begin{aligned} \braket{p'|\alpha} &= \int^{+\infin}_{-\infin} dx' \braket{p'|x'} \braket{x'|\alpha} \\&= \int^{+\infin}_{-\infin} dx' \ \frac{1}{\sqrt{2\pi\hbar}} \exp(\frac{-ip'x'}{\hbar}) (\frac{1}{\pi^{1/4}\sqrt{d}})\exp\left[ikx'-\frac{x'^2}{2d^2}\right] \\&= \sqrt{\frac{1}{2\pi\sqrt{\pi}\hbar d}} \int^{+\infin}_{-\infin} dx' \exp(ikx'-\frac{ip'x'}{\hbar}-\frac{x'^2}{2d^2}) \\&= \sqrt{\frac{d}{\hbar\sqrt{\pi}}} \exp\left[\frac{-(p'-\hbar k)^2d^2}{2\hbar^2}\right] \end{aligned}

上式的推导用到了:

xp=12πexp(ipx)\braket{x'|p'} = \frac{1}{\sqrt{2\pi\hbar}} \exp(\frac{ip'x'}{\hbar})

下面再来计算 p^,p^2\hat{p},\hat{p}^2 的平均值:

p^=αp^α=+dpdpαppp^ppα=+dpdpαppδ(pp)pα=+dppα2=k\begin{aligned} \braket{\hat{p}} &= \bra{\alpha}\hat{p}\ket{\alpha} = \iint^{+\infin}_{-\infin} dp' dp'' \braket{\alpha|p'} \braket{p'|\hat{p}|p''} \braket{p''|\alpha} \\&= \iint^{+\infin}_{-\infin} dp' dp'' \braket{\alpha|p'} p''\delta(p'-p'') \braket{p''|\alpha} \\&= \int^{+\infin}_{-\infin} dp' \left|\braket{p'|\alpha}\right|^2 = \hbar k \end{aligned}

p^2=αp^2α=+dpdpdpαppp^ppp^ppα=+dpp2pα2=2k2+22d2\begin{aligned} \braket{\hat{p}^2} &= \bra{\alpha}\hat{p}^2\ket{\alpha} = \iiint^{+\infin}_{-\infin} dp' dp'' dp''' \braket{\alpha|p'} \braket{p'|\hat{p}|p''} \braket{p''|\hat{p}|p'''} \braket{p'''|\alpha} \\&= \int^{+\infin}_{-\infin} dp'\ {p'}^2 \left|\braket{p'|\alpha}\right|^2 = \hbar^2k^2+\frac{\hbar^2}{2d^2} \end{aligned}

最终可以计算出同样的方差:

(Δp^)2=p^2p^2=22d2\braket{(\Delta \hat{p})^2} = \braket{\hat{p}^2} - \braket{\hat{p}}^2 = \frac{\hbar^2}{2d^2}

# 量子动力学习题

# 海森堡绘景中求解自旋进动问题

在海森堡绘景中求解自旋进动问题。

H^=(eBmc)S^z=ωS^z\hat{H} = - (\frac{eB}{mc})\hat{S}_z = \omega\hat{S}_z

(a)(a) 写出时间相关算符 S^x(t),S^y(t),S^z(t)\hat{S}_x(t),\hat{S}_y(t),\hat{S}_z(t) 的海森堡运动方程。
(b) 对于初态 α=c+++c\ket{\alpha} = c_+\ket{+}+c_-\ket{-}, 求 tt 时刻的期望值 S^x,S^y,S^z\braket{\hat{S}_x},\braket{\hat{S}_y},\braket{\hat{S}_z} 随时间的变化。


\quad (a)(a) 在海森堡绘景下,算符的演化满足如下方程:

ddtA^=i[H^,A^]\frac{d}{dt}\hat{A} = \frac{i}{\hbar} [\hat{H},\hat{A}]

因此,S^x(t),S^y(t),S^z(t)\hat{S}_x(t),\hat{S}_y(t),\hat{S}_z(t) 的海森堡运动方程如下:

ddtS^x(t)=i[ωS^z,S^x(t)]=ωS^y(t)ddtS^y(t)=i[ωS^z,S^y(t)]=ωS^x(t)ddtS^z(t)=i[ωS^z,S^z(t)]=0\begin{aligned} \frac{d}{dt}\hat{S}_x(t) &= \frac{i}{\hbar} [\omega\hat{S}_z,\hat{S}_x(t)] = -\omega \hat{S}_y(t) \\ \frac{d}{dt}\hat{S}_y(t) &= \frac{i}{\hbar} [\omega\hat{S}_z,\hat{S}_y(t)] = \omega \hat{S}_x(t) \\ \frac{d}{dt}\hat{S}_z(t) &= \frac{i}{\hbar} [\omega\hat{S}_z,\hat{S}_z(t)] = 0 \end{aligned}

这些方程描述了自旋在磁场中的进动行为。

\quad (b) 通过求解(a)(a) 中的海森堡运动方程,可得:

S^x(t)=S^xcosωt+S^ysinωtS^y(t)=S^xsinωtS^ycosωtS^z(t)=S^z\begin{aligned} \hat{S}_x(t) &= \hat{S}_x\cos\omega t+\hat{S}_y \sin \omega t \\ \hat{S}_y(t) &= \hat{S}_x\sin\omega t-\hat{S}_y \cos \omega t \\ \hat{S}_z(t) &= \hat{S}_z \end{aligned}

解出上式用到了以下的初始条件:

S^x(0)=S^x;S^y(0)=S^y;S^z(0)=S^z\hat{S}_x(0) = \hat{S}_x ; \quad\hat{S}_y(0) = \hat{S}_y ; \quad\hat{S}_z(0) = \hat{S}_z

可求得期待值随时间的变化如下:

S^x=αS^x(t)α=2(c+c+cc+)cosωt+2i(c+ccc+)sinωt\braket{\hat{S}_x} = \braket{\alpha|\hat{S}_x(t)|\alpha} = \frac{\hbar}{2}(c^*_+c_-+c_-^*c_+)\cos\omega t + \frac{\hbar}{2i} (c^*_+c_--c_-^*c_+)\sin\omega t

S^y=αS^y(t)α=2(c+c+cc+)sinωt2i(c+ccc+)cosωt\braket{\hat{S}_y} = \braket{\alpha|\hat{S}_y(t)|\alpha} = \frac{\hbar}{2}(c^*_+c_-+c_-^*c_+)\sin\omega t - \frac{\hbar}{2i} (c^*_+c_--c_-^*c_+)\cos\omega t

S^z=αS^z(t)α=2(c+c+cc)\braket{\hat{S}_z} = \braket{\alpha|\hat{S}_z(t)|\alpha} = \frac{\hbar}{2} (c^*_+c_+ - c_-^*c_-)

# 相互作用绘景中求解受微扰谐振子问题

\quad 考虑一个受微扰的谐振子:

H^0=p^22m+mω22x2=ω(a^a^+12)\hat{H}_0=\frac{\hat{p}^2}{2m}+\frac{m\omega^2}{2}x^2=\hbar\omega(\hat{a}^\dagger\hat{a}+\frac{1}{2})

H^1=ϵx=ϵ2mω(a^+a^)\hat{H}_1=\epsilon x=\epsilon \sqrt{\frac{\hbar}{2m\omega}}(\hat{a}^\dagger+\hat{a})

其中ϵ\epsilon 是小量。
(a)(a) 在相互作用绘景中,写出 H^1I(t)\hat{H}_1^\mathcal{I}(t)
(b) 在相互作用绘景中,写出演化算符 U^I\hat{U}_\mathcal{I} 的前三项。
(c) 利用 (b) 的结果,求出态矢量的时间演化:

α(t)I=U^I(t,0)α(0)I\ket{\alpha(t)}_\mathcal{I}=\hat{U}_\mathcal{I}(t,0)\ket{\alpha(0)}_\mathcal{I}

其中初态处于谐振子的第 n 个本征态:

α(0)I=n\ket{\alpha(0)}_\mathcal{I}=\ket{n}


\quad (a)(a) 从薛定谔绘景转化到相互作用绘景:

H^1I(t)=eiH^0tH^1eiH^0t=ϵ2mωeiωta^a^(a^+a^)eiωta^a^\begin{aligned} \hat{H}_1^\mathcal{I}(t) = e^{\frac{i}{\hbar}\hat{H}_0t} \hat{H}_1 e^{-\frac{i}{\hbar}\hat{H}_0t} = \epsilon \sqrt{\frac{\hbar}{2m\omega}} e^{i\omega t\hat{a}^\dagger\hat{a}} (\hat{a}^\dagger+\hat{a}) e^{-i\omega t\hat{a}^\dagger\hat{a}} \end{aligned}

想要利用公式eϵA^B^eϵA^=B^+ϵ[A^,B^]+ϵ22![A^,[A^,B^]]+e^{\epsilon\hat{A}}\hat{B}e^{-\epsilon\hat{A}}=\hat{B}+\epsilon[\hat{A},\hat{B}]+\frac{\epsilon^2}{2!}[\hat{A},[\hat{A},\hat{B}]]+\cdots,先计算:

[a^a^,a^+a^]=a^a^[a^a^,[a^a^,a^+a^]]=a^+a^\begin{aligned} &[\hat{a}^\dagger\hat{a},\hat{a}^\dagger+\hat{a}] = \hat{a}^\dagger-\hat{a} \\ &[\hat{a}^\dagger\hat{a},[\hat{a}^\dagger\hat{a},\hat{a}^\dagger+\hat{a}]] = \hat{a}^\dagger+\hat{a} \\ &\cdots \end{aligned}

代入递推关系,最终可计算得:

H^1I(t)=(a^+a^)+iωt(a^a^)+(iωt)22!(a^+a^)+=ϵ2mω(a^eiωt+a^eiωt)\begin{aligned} \hat{H}_1^\mathcal{I}(t) &= (\hat{a}^\dagger+\hat{a}) + i\omega t(\hat{a}^\dagger-\hat{a}) + \frac{(i\omega t)^2}{2!}(\hat{a}^\dagger+\hat{a})+\cdots \\&= \epsilon \sqrt{\frac{\hbar}{2m\omega}}(\hat{a}^\dagger e^{i\omega t}+\hat{a}e^{-i\omega t}) \end{aligned}

\quad (b) 相互作用绘景下的时间演化算符前三项可以写为:

U^I(t,0)=1i0tH^1I(t1)dt1+(i)20t[H^1I(t1)0t1H^1I(t2)dt2]dt1\hat{U}_\mathcal{I}(t,0) = 1 - \frac{i}{\hbar} \int^t_0\hat{H}^\mathcal{I}_1(t_1) dt_1 + (-\frac{i}{\hbar})^2 \int^t_0 \left[ \hat{H}^\mathcal{I}_1(t_1) \int^{t_1}_0 \hat{H}^\mathcal{I}_1(t_2) dt_2 \right] dt_1

上式右边第二项:

A^2=i0tH^1I(t1)dt1=ϵω2mω[a^(eiωt1)a^(eiωt1)]\hat{A}_2 = - \frac{i}{\hbar} \int^t_0\hat{H}^\mathcal{I}_1(t_1) dt_1 = -\frac{\epsilon}{\omega} \sqrt{\frac{\hbar}{2m\omega}} \left[ \hat{a}^\dagger (e^{i\omega t}-1)-\hat{a}(e^{-i\omega t}-1) \right]

右边第三项:

A^3=(i)20t[H^1I(t1)0t1H^1I(t2)dt2]dt1=ϵ22mω3[a^a^12(eiωt1)2+a^a^(eiωt1iωt)+a^a^(eiωt1+iωt)a^a^(eiωt1)2]\begin{aligned} \hat{A}_3 =& (-\frac{i}{\hbar})^2 \int^t_0 \left[ \hat{H}^\mathcal{I}_1(t_1) \int^{t_1}_0 \hat{H}^\mathcal{I}_1(t_2) dt_2 \right] dt_1 \\=& \frac{\epsilon^2\hbar}{2m\omega^3} \left[ \hat{a}^\dagger\hat{a}^\dagger\frac{1}{2}(e^{i\omega t}-1)^2 + \hat{a}^\dagger\hat{a}(e^{i\omega t}-1-i\omega t) + \hat{a}\hat{a}^\dagger(e^{-i\omega t}-1+i\omega t) - \hat{a}\hat{a}(e^{-i\omega t}-1)^2 \right] \end{aligned}

结合上面上式,最终可得相互作用绘景下时间演化算符的前三项:

U^I(t,0)=1+A^2+A^3\hat{U}_\mathcal{I}(t,0) = 1 + \hat{A}_2 + \hat{A}_3

\quad (c) 将 (b) 中求得的时间演化算符作用到初态上,就可以得到态矢的时间演化。其中时间演化算符的第二项作用:

A^2n=ϵω2mω[n+1(eiωt1)n+1n(eiωt1)n1]\hat{A}_2 \ket{n} = -\frac{\epsilon}{\omega} \sqrt{\frac{\hbar}{2m\omega}} \left[ \sqrt{n+1} (e^{i\omega t}-1) \ket{n+1} -\sqrt{n}(e^{-i\omega t}-1)\ket{n-1} \right]

第三项的作用结果为:

A^3n=ϵ22mω3{(n+1)(n+2)2(eiωt1)2n+2+[(2n+1)(1cosωt)+12(eiωteiωt)iωt]n+n(n1)2(eiωt1)2n2}\begin{aligned} \hat{A}_3\ket{n} &= \frac{\epsilon^2\hbar}{2m\omega^3} \bigg\{ \frac{\sqrt{(n+1)(n+2)}}{2}(e^{i\omega t}-1)^2\ket{n+2} \\&\quad+ \left[ (2n+1)(1-\cos\omega t)+\frac{1}{2}(e^{i\omega t}-e^{-i\omega t})-i\omega t \right] \ket{n} \\&\quad+ \frac{\sqrt{n(n-1)}}{2} (e^{-i\omega t}-1)^2 \ket{n-2} \bigg\} \end{aligned}

所有,最终态矢的时间演化为:

α(t)I=n+A^2n+A^3n\ket{\alpha(t)}_\mathcal{I} = \ket{n} + \hat{A}_2 \ket{n} + \hat{A}_3\ket{n}

# 一维谐振子的相干态

\quad 一维谐振子的相干态定义为湮灭算符的一个本征态:

a^λ=λλ\hat{a}\ket{\lambda} = \lambda\ket{\lambda}

其中λ\lambda 一般为复数。
(a)(a) 证明:

λ=eλ2/2eλa^0\ket{\lambda} = e^{-|\lambda|^2/2} e^{\lambda\hat{a}^\dagger} \ket{0}

是一个归一化的相干态。
(b) 证明对这样的态,其满足最小不确定度乘积关系。
(c) 把λ\ket{\lambda} 写成:

λ=0f(n)n\ket{\lambda} = \sum_0^\infin f(n)\ket{n}

证明f(n)2|f(n)|^2 是泊松分布的形式。求出最大几率对应的nn 值以及对应的EE 值。
(d) 证明一个相干态也可以通过一个平移算符 eip^l/e^{-i\hat{p}l/\hbar} 作用到基态上得到。其中p^\hat{p} 是动量算符,ll 是平移距离。


\quad (a)(a) 证明归一化:

λλ=eλ20eλa^eλa^0=eλ2n0eλa^nneλa^0=eλ2n0(λ)nn!n!00λnn!n!0=eλ2nλ2nn!=eλ2eλ2=1\begin{aligned} \braket{\lambda|\lambda} &= e^{-|\lambda|^2} \bra{0} e^{\lambda^*\hat{a}} e^{\lambda\hat{a}^\dagger} \ket{0} \\&= e^{-|\lambda|^2} \sum_n \bra{0} e^{\lambda^*\hat{a}} \ket{n} \bra{n} e^{\lambda\hat{a}^\dagger} \ket{0} \\&= e^{-|\lambda|^2} \sum_n \bra{0} \frac{(\lambda^*)^n}{n!}\sqrt{n!} \ket{0} \bra{0} \frac{\lambda^n}{n!}\sqrt{n!} \ket{0} \\&= e^{-|\lambda|^2} \sum_n \frac{|\lambda|^{2n}}{n!} = e^{-|\lambda|^2} e^{|\lambda|^2} = 1 \end{aligned}

证毕。

\quad (b) 算符x^,x^2,p^,p^2\hat{x},\hat{x}^2,\hat{p},\hat{p}^2 用产生、湮灭算符的表示分别为:

x^=2mω(a^+a^)x^2=2mω(a^a^+a^a^+2a^a^+1)p^=imω2(a^a^)p^2=mω2(a^a^+a^a^2a^a^1)\begin{aligned} &\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a}^\dagger+\hat{a})\quad \\ &\hat{x}^2 = \frac{\hbar}{2m\omega}(\hat{a}^\dagger\hat{a}^\dagger+\hat{a}\hat{a}+2\hat{a}^\dagger\hat{a}+1) \\ &\hat{p} = i\sqrt{\frac{m\hbar\omega}{2}} (\hat{a}^\dagger-\hat{a}) \\ &\hat{p}^2 = -\frac{m\hbar\omega}{2} (\hat{a}^\dagger\hat{a}^\dagger+\hat{a}\hat{a}-2\hat{a}^\dagger\hat{a}-1) \end{aligned}

那么有:

λx^λ=2mω(λ+λ)λx^2λ=2mω((λ)2+λ2+2λ2+1)λp^λ=imω2(λλ)λp^2λ=mω2((λ)2+λ22λ21)\begin{aligned} &\bra{\lambda}\hat{x}\ket{\lambda} = \sqrt{\frac{\hbar}{2m\omega}} \left(\lambda^*+\lambda\right) \\ &\bra{\lambda}\hat{x}^2\ket{\lambda} = \frac{\hbar}{2m\omega}\left((\lambda^*)^2+\lambda^2+2|\lambda|^2+1\right) \\ &\bra{\lambda}\hat{p}\ket{\lambda} = i\sqrt{\frac{m\hbar\omega}{2}} \left(\lambda^*-\lambda\right) \\ &\bra{\lambda}\hat{p}^2\ket{\lambda} = -\frac{m\hbar\omega}{2} \left((\lambda^*)^2+\lambda^2-2|\lambda|^2-1\right) \end{aligned}

其中上式的推导利用到了:

{a^λ=λλλa^=λλ\begin{cases} \hat{a}\ket{\lambda} = \lambda\ket{\lambda} \\ \bra{\lambda}\hat{a}^\dagger = \bra{\lambda}\lambda^* \end{cases}

因此x,px,p 的方差分别为:

(Δx^)2=λx^2λλx^λ2=2mω\braket{(\Delta \hat{x})^2} = \bra{\lambda}\hat{x}^2\ket{\lambda} - \bra{\lambda}\hat{x}\ket{\lambda}^2 = \frac{\hbar}{2m\omega}

(Δp^)2=λp^2λλp^λ2=mω2\braket{(\Delta \hat{p})^2} = \bra{\lambda}\hat{p}^2\ket{\lambda} - \bra{\lambda}\hat{p}\ket{\lambda}^2 = \frac{m\hbar\omega}{2}

因此这个态的不确定度为:

Δx^Δp^=2mω×mω2=2\braket{\Delta \hat{x}}\braket{\Delta \hat{p}} = \sqrt{\frac{\hbar}{2m\omega}\times\frac{m\hbar\omega}{2}} = \frac{\hbar}{2}

可见,满足最小的不确定度乘积关系。

\quad (c) 利用(a)(a)λ\ket{\lambda} 的表示式,可以推导出f(n)f(n) 的形式。推导如下:

λ=eλ2/2eλa^0=eλ2/2n=0λnn!(a^)n0=eλ2/2n=0λnn!n!n=n=0eλ2/2λnn!n=n=0f(n)n\begin{aligned} \ket{\lambda} &= e^{-|\lambda|^2/2} e^{\lambda\hat{a}^\dagger} \ket{0} \\ &= e^{-|\lambda|^2/2} \sum_{n=0} \frac{\lambda^n}{n!} (\hat{a}^\dagger)^n\ket{0} \\ &= e^{-|\lambda|^2/2} \sum_{n=0} \frac{\lambda^n}{n!} \sqrt{n!} \ket{n} \\ &= \sum_{n=0}e^{-|\lambda|^2/2}\frac{\lambda^n}{\sqrt{n!}}\ket{n} = \sum_{n=0}f(n)\ket{n} \end{aligned}

由此,f(n)f(n) 的形式为:

f(n)=eλ2/2λnn!f(n) = e^{-|\lambda|^2/2}\frac{\lambda^n}{\sqrt{n!}}

f(n)2=eλ2λ2nn!|f(n)|^2 = e^{-|\lambda|^2}\frac{\lambda^{2n}}{n!}

明显满足泊松分布的表达式。根据泊松分布的性质,当 n=λ2n=|\lambda|^2 时,对应的几率最大 (若 λ2|\lambda|^2 不是整数,则nn 考虑等于最接近λ2|\lambda|^2 的两个整数)。而对应的 EE 值为 ω(λ2+12)\hbar\omega(|\lambda|^2+\frac{1}{2})

\quad (d) 平移算符可写为:

eip^l/=exp[lmω2(a^a^)]=exp[z(a^a^)]e^{-i\hat{p}l/\hbar} = \exp \left[ \frac{l}{\hbar} \sqrt{\frac{m\hbar\omega}{2}}(\hat{a}^\dagger-\hat{a}) \right] = \exp \left[ z(\hat{a}^\dagger-\hat{a}) \right]

其中

z=lmω2z = \frac{l}{\hbar} \sqrt{\frac{m\hbar\omega}{2}}

利于到 eA^+B^=eA^eB^e12[A^,B^]e^{\hat{A}+\hat{B}}=e^{\hat{A}}e^{\hat{B}}e^{-\frac{1}{2}[\hat{A},\hat{B}]}[a^,a^]=1[\hat{a},\hat{a}^\dagger]=1 可得:

exp[z(a^a^)]=eza^eza^e12[za^,za^]=eza^eza^ez22\exp \left[ z(\hat{a}^\dagger-\hat{a}) \right] = e^{z\hat{a}^\dagger}e^{-z\hat{a}}e^{-\frac{1}{2}[z\hat{a}^\dagger,-z\hat{a}]} = e^{z\hat{a}^\dagger}e^{-z\hat{a}} e^{-\frac{z^2}{2}}

那么我们现在探讨平移算符作用到基态上,然后再将湮灭算符作用上去,即如下的式子:

a^eip^l/0=a^exp[z(a^a^)]0=a^eza^eza^ez220=ez22a^eza^(1za^+)0=ez22a^eza^0=ez22a^n=0znn!(a^)n0=ez22n=0znn!a^n=ez22zn=1zn1(n1)!n1=ez22zn=0znn!(a^)n0=ez22zeza^(eza^0)=z(eza^eza^ez220)=zeip^l/0\begin{aligned} \hat{a}e^{-i\hat{p}l/\hbar}\ket{0} &= \hat{a}\exp \left[ z(\hat{a}^\dagger-\hat{a}) \right]\ket{0} \\ &= \hat{a} e^{z\hat{a}^\dagger}e^{-z\hat{a}} e^{-\frac{z^2}{2}} \ket{0} \\ &= e^{-\frac{z^2}{2}} \hat{a} e^{z\hat{a}^\dagger} (1-z\hat{a}+\cdots)\ket{0} \\ &= e^{-\frac{z^2}{2}} \hat{a} e^{z\hat{a}^\dagger} \ket{0} \\ &= e^{-\frac{z^2}{2}} \hat{a} \sum_{n=0} \frac{z^n}{n!} (\hat{a}^\dagger)^n\ket{0} \\ &= e^{-\frac{z^2}{2}} \sum_{n=0} \frac{z^n}{\sqrt{n!}} \hat{a} \ket{n} \\ &= e^{-\frac{z^2}{2}} z \sum_{n=1} \frac{z^{n-1}}{\sqrt{(n-1)!}} \ket{n-1} \\ &= e^{-\frac{z^2}{2}} z \sum_{n=0} \frac{z^n}{n!} (\hat{a}^\dagger)^n\ket{0} \\ &= e^{-\frac{z^2}{2}} z e^{z\hat{a}^\dagger} (e^{-z\hat{a}}\ket{0}) \\ &= z (e^{z\hat{a}^\dagger}e^{-z\hat{a}} e^{-\frac{z^2}{2}}\ket{0}) \\ &= z e^{-i\hat{p}l/\hbar}\ket{0} \end{aligned}

上式最后的结果告诉我们,平移算符作用在 0\ket{0} 得到的态是湮灭算符的本征态,本征值为 zz。而相干态的定义就是湮灭算符的本征态。因此一个相干态可以通过平移算符作用到 0\ket{0} 上得到。

# 一维谐振子的压缩态

\quad 湮灭算符 a^=12(x^+ip^)\hat{a}=\frac{1}{\sqrt{2}}(\hat{x}+i\hat{p}),产生算符 a^=12(x^ip^)\hat{a}^\dagger=\frac{1}{\sqrt{2}}(\hat{x}-i\hat{p})[a^,a^]=1[\hat{a},\hat{a}^\dagger]=1。这里,=m=ω=1\hbar=m=\omega=1。利用压缩算符 S^(ε)=exp(12εa^a^12εa^a^)\hat{S}(\varepsilon)=\exp\left(\frac{1}{2}\varepsilon^*\hat{a}\hat{a}-\frac{1}{2}\varepsilon\hat{a}^\dagger\hat{a}^\dagger\right) 和平移算符 D^(α)=exp(αa^αa^)\hat{D}(\alpha)=\exp\left(\alpha\hat{a}^\dagger-\alpha^*\hat{a}\right),可以产生压缩态 α,ε=D^(α)S^(ε)0\ket{\alpha,\varepsilon}=\hat{D}(\alpha)\hat{S}(\varepsilon)\ket{0},其中压缩参数 ε=re2iϕ\varepsilon=re^{2i\phi}
(a)(a) 证明:

S^(ε)a^S^(ε)=a^coshra^e2iϕsinhr\hat{S}^\dagger(\varepsilon)\hat{a}\hat{S}(\varepsilon) = \hat{a}\cosh r - \hat{a}^\dagger e^{2i\phi} \sinh r

S^(ε)a^S^(ε)=a^coshra^e2iϕsinhr\hat{S}^\dagger(\varepsilon)\hat{a}^\dagger\hat{S}(\varepsilon) = \hat{a}^\dagger\cosh r - \hat{a} e^{-2i\phi} \sinh r

(b) 已知:

Y^1=12(x^cosϕ+p^sinϕ);Y^2=12(x^sinϕ+p^cosϕ)\hat{Y}_1=\frac{1}{\sqrt{2}}(\hat{x}\cos\phi+\hat{p}\sin\phi)\ ;\ \hat{Y}_2=\frac{1}{\sqrt{2}}(-\hat{x}\sin\phi+\hat{p}\cos\phi)

对于压缩态 α,ε\ket{\alpha,\varepsilon},求方差 (ΔY1)2\braket{(\Delta Y_1)^2}(ΔY2)2\braket{(\Delta Y_2)^2}

解:
\quad (a)(a)

S^(ε)a^S^(ε)=exp(12εa^a^12εa^a^)a^exp(12εa^a^12εa^a^)=a^+[12εa^a^12εa^a^,a^]+12![12εa^a^12εa^a^,[12εa^a^12εa^a^,a^]]+=a^εa^+εε2!a^εεε3!a^+=a^re2iϕa^+r22!a^r3e2iϕ3!a^=a^coshra^e2iϕsinhr\begin{aligned} \hat{S}^\dagger(\varepsilon)\hat{a}\hat{S}(\varepsilon) &= \exp\left(\frac{1}{2}\varepsilon\hat{a}^\dagger\hat{a}^\dagger-\frac{1}{2}\varepsilon^*\hat{a}\hat{a}\right) \hat{a} \exp\left(\frac{1}{2}\varepsilon^*\hat{a}\hat{a}-\frac{1}{2}\varepsilon\hat{a}^\dagger\hat{a}^\dagger\right) \\ &= \hat{a} + \left[\frac{1}{2}\varepsilon\hat{a}^\dagger\hat{a}^\dagger-\frac{1}{2}\varepsilon^*\hat{a}\hat{a},\hat{a}\right] + \frac{1}{2!}\left[\frac{1}{2}\varepsilon\hat{a}^\dagger\hat{a}^\dagger-\frac{1}{2}\varepsilon^*\hat{a}\hat{a},\left[\frac{1}{2}\varepsilon\hat{a}^\dagger\hat{a}^\dagger-\frac{1}{2}\varepsilon^*\hat{a}\hat{a},\hat{a}\right]\right] + \cdots \\ &= \hat{a} - \varepsilon \hat{a}^\dagger + \frac{\varepsilon\varepsilon^*}{2!}\hat{a} - \frac{\varepsilon\varepsilon^*\varepsilon}{3!} \hat{a}^\dagger + \cdots \\ &= \hat{a} - re^{2i\phi}\hat{a}^\dagger + \frac{r^2}{2!}\hat{a} -\frac{r^3e^{2i\phi}}{3!}\hat{a}^\dagger \\ &= \hat{a}\cosh r - \hat{a}^\dagger e^{2i\phi} \sinh r \end{aligned}

同理可证明:

S^(ε)a^S^(ε)=a^coshra^e2iϕsinhr\hat{S}^\dagger(\varepsilon)\hat{a}^\dagger\hat{S}(\varepsilon) = \hat{a}^\dagger\cosh r - \hat{a} e^{-2i\phi} \sinh r

证毕。

\quad (b) 用产生和湮灭算符表示:

Y^1=12[(a^+a^)cosϕ+i(a^a^)sinϕ]=12(eiϕa^+eiϕa^)Y^2=12[(a^+a^)sinϕ+i(a^a^)cosϕ]=i2(eiϕa^+eiϕa^)Y^12=14[a^a^(cosϕsinϕsin2ϕ)+a^a^cos2ϕ]Y^22=14[a^a^sin2ϕ(a^a^+a^a^a^a^)sinϕcosϕ+(a^a^a^a^+a^a^a^a^)cos2ϕ]\begin{aligned} &\hat{Y}_1 = \frac{1}{2}\left[(\hat{a}+\hat{a}^\dagger)\cos\phi+i(\hat{a}^\dagger-\hat{a})\sin\phi\right] = \frac{1}{2}(e^{-i\phi}\hat{a}+e^{i\phi}\hat{a}^\dagger) \\ &\hat{Y}_2 = \frac{1}{2}\left[-(\hat{a}+\hat{a}^\dagger)\sin\phi+i(\hat{a}^\dagger-\hat{a})\cos\phi\right] = \frac{i}{2} \left(-e^{-i\phi}\hat{a}+e^{i\phi}\hat{a}^\dagger\right) \\ &\hat{Y}^2_1 = \frac{1}{4}\left[\hat{a}\hat{a}^\dagger(\cos\phi\sin\phi - \sin^2\phi) + \hat{a}^\dagger\hat{a}^\dagger\cos^2\phi\right] \\ &\hat{Y}_2^2=\frac{1}{4}\left[\hat{a} \hat{a}^{\dagger}\sin ^2 \phi-\left(\hat{a}^{\dagger} \hat{a}^{\dagger}+\hat{a} \hat{a}-\hat{a}^{\dagger} \hat{a}\right) \sin \phi \cos \phi+\left(\hat{a}^{\dagger} \hat{a}^{\dagger}-\hat{a} \hat{a}^{\dagger}+\hat{a} \hat{a}-\hat{a}^{\dagger} \hat{a}\right) \cos ^2 \phi\right] \end{aligned}

计算平均值:

α,εY^1α,ε=αS^(ε)Y^1S^(ε)α=12eiϕα(a^coshra^e2iϕsinhr)α+12eiϕα(a^coshra^e2iϕsinhr)α=12eiϕ(αcoshrαe2iϕsinhr)+12eiϕ(αcoshrαe2iϕsinhr)=12eiϕα(coshrsinhr)+12eiϕα(coshrsinhr)=12eiϕαer+12eiϕαer\begin{aligned} \bra{\alpha,\varepsilon}\hat{Y}_1\ket{\alpha,\varepsilon} &= \bra{\alpha}\hat{S}^\dagger(\varepsilon)\hat{Y}_1\hat{S}(\varepsilon)\ket{\alpha} \\ &= \frac{1}{2}e^{-i\phi}\bra{\alpha}\left(\hat{a}\cosh r - \hat{a}^\dagger e^{2i\phi} \sinh r\right)\ket{\alpha} + \frac{1}{2}e^{i\phi}\bra{\alpha}\left(\hat{a}^\dagger\cosh r - \hat{a} e^{-2i\phi} \sinh r\right)\ket{\alpha} \\ &= \frac{1}{2}e^{-i\phi}(\alpha\cosh r-\alpha^*e^{2i\phi} \sinh r) + \frac{1}{2}e^{i\phi} (\alpha^*\cosh r-\alpha e^{-2i\phi} \sinh r) \\ &= \frac{1}{2}e^{-i\phi}\alpha (\cosh r-\sinh r) + \frac{1}{2}e^{i\phi}\alpha^* (\cosh r-\sinh r) \\ &= \frac{1}{2}e^{-i\phi}\alpha e^{-r} + \frac{1}{2}e^{i\phi}\alpha^* e^{-r} \end{aligned}

α,εY^2α,ε=αS^(ε)Y^2S^(ε)α=i2eiϕα(a^coshra^e2iϕsinhr)α+i2eiϕα(a^coshra^e2iϕsinhr)α=i2eiϕ(αcoshrαe2iϕsinhr)+i2eiϕ(αcoshrαe2iϕsinhr)=i2eiϕα(coshr+sinhr)+i2eiϕα(coshr+sinhr)=i2eiϕαer+i2eiϕαer\begin{aligned} \bra{\alpha,\varepsilon}\hat{Y}_2\ket{\alpha,\varepsilon} &= \bra{\alpha}\hat{S}^\dagger(\varepsilon)\hat{Y}_2\hat{S}(\varepsilon)\ket{\alpha} \\ &= -\frac{i}{2}e^{-i\phi}\bra{\alpha}\left(\hat{a}\cosh r - \hat{a}^\dagger e^{2i\phi} \sinh r\right)\ket{\alpha} + \frac{i}{2}e^{i\phi}\bra{\alpha}\left(\hat{a}^\dagger\cosh r - \hat{a} e^{-2i\phi} \sinh r\right)\ket{\alpha} \\ &= -\frac{i}{2}e^{-i\phi}(\alpha\cosh r-\alpha^*e^{2i\phi} \sinh r) + \frac{i}{2}e^{i\phi} (\alpha^*\cosh r-\alpha e^{-2i\phi} \sinh r) \\ &= -\frac{i}{2}e^{-i\phi}\alpha(\cosh r+\sinh r) + \frac{i}{2}e^{i\phi}\alpha^*(\cosh r+\sinh r) \\ &= -\frac{i}{2}e^{-i\phi}\alpha e^{r} + \frac{i}{2}e^{i\phi}\alpha^* e^{r} \end{aligned}

再利用相同的方法计算 α,εY^12α,ε\bra{\alpha,\varepsilon}\hat{Y}^2_1\ket{\alpha,\varepsilon}α,εY^22α,ε\bra{\alpha,\varepsilon}\hat{Y}^2_2\ket{\alpha,\varepsilon},最后代入方差公式可求得:

(ΔY1)2=14e2r(ΔY2)2=14e2r\begin{aligned} \braket{(\Delta Y_1)^2} &= \frac{1}{4} e^{-2r} \\ \braket{(\Delta Y_2)^2} &= \frac{1}{4} e^{2r} \end{aligned}

# 角动量理论习题

# 转动算符的作用

\quadzz 轴转动 α\alpha 角,R^z(α)=eiαJ^z/\hat{R}_z(\alpha)=e^{-i\alpha\hat{J}_z/\hbar}

(a)(a) 计算 R^z(α)J^xR^z(α)\hat{R}_z^\dagger(\alpha)\hat{J}_x\hat{R}_z(\alpha)R^z(α)J^yR^z(α)\hat{R}_z^\dagger(\alpha)\hat{J}_y\hat{R}_z(\alpha),给出角动量算符 J=(J^x,J^y,J^z)T\vec{J}=(\hat{J}_x,\hat{J}_y,\hat{J}_z)^T 在绕 zz 轴转动 α\alpha 角下如何变换。

(b) 证明:eiπJ^z/eiαJ^y/eiπJ^z/=eiαJ^y/e^{i\pi\hat{J}_z/\hbar}e^{i\alpha\hat{J}_y/\hbar}e^{-i\pi\hat{J}_z/\hbar} = e^{-i\alpha\hat{J}_y/\hbar}

解:
\quad (a)(a) 要利用到公式:

eξA^B^eξA^=B^+ξ[A^,B^]+ξ22![A^,[A^,B^]]+e^{\xi\hat{A}}\hat{B}e^{-\xi\hat{A}} = \hat{B} + \xi[\hat{A},\hat{B}] + \frac{\xi^2}{2!}[\hat{A},[\hat{A},\hat{B}]] + \cdots

由于

[J^z,J^x]=iJ^y[J^z,[J^z,J^x]]=2J^x[J^z,[J^z2n,J^x]]=2nJ^x[J^z,[J^z2n+1,J^x]]=i2n+1J^y\begin{aligned} &[\hat{J}_z,\hat{J}_x] = i\hbar\hat{J}_y \\ &[\hat{J}_z,[\hat{J}_z,\hat{J}_x]] = \hbar^2\hat{J}_x \\ &\cdots \\ &[\underbrace{\hat{J}_z,\cdots[\hat{J}_z}_{2n},\hat{J}_x]] = \hbar^{2n}\hat{J}_x \\ &[\underbrace{\hat{J}_z,\cdots[\hat{J}_z}_{2n+1},\hat{J}_x]] = i\hbar^{2n+1}\hat{J}_y \end{aligned}

因此

R^z(α)J^xR^z(α)=Jx^α22!J^x+α44!J^x++(1)nα2n(2n)!J^xαJ^yα33!J^y+α55!J^y++(1)nα2n+1(2n+1)!J^y=J^xcosα+J^ysinα\begin{aligned} \hat{R}_z^\dagger(\alpha)\hat{J}_x\hat{R}_z(\alpha) =& \hat{J_x} - \frac{\alpha^2}{2!}\hat{J}_x + \frac{\alpha^4}{4!}\hat{J}_x + \cdots +(-1)^n \frac{\alpha^{2n}}{(2n)!}\hat{J}_x \\ &\quad \alpha\hat{J}_y - \frac{\alpha^3}{3!}\hat{J}_y + \frac{\alpha^5}{5!} \hat{J}_y + \cdots + (-1)^n\frac{\alpha^{2n+1}}{(2n+1)!}\hat{J}_y \\ =& \hat{J}_x \cos\alpha + \hat{J}_y \sin\alpha \end{aligned}

而同理可得:

R^z(α)J^yR^z(α)=J^xsinα+J^ycosα\hat{R}_z^\dagger(\alpha)\hat{J}_y\hat{R}_z(\alpha) = -\hat{J}_x\sin\alpha + \hat{J}_y\cos\alpha

角动量算符 J\vec{J}J^x,J^y\hat{J}_x,\hat{J}_y 分量在绕 zz 轴转动 α\alpha 角后,变化如同上面所推导的,而 J^z\hat{J}_z 分量则不会变化,即:

R^z(α)JR^z(α)=(J^xcosα+J^ysinα,J^xsinα+J^ycosα,J^z)T\hat{R}_z^\dagger(\alpha)\vec{J}\hat{R}_z(\alpha) = \left(\hat{J}_x \cos\alpha + \hat{J}_y \sin\alpha , -\hat{J}_x\sin\alpha + \hat{J}_y\cos\alpha , \hat{J}_z\right)^T

\quad (b) 沿用绕 zz 轴转动的记号 R^z(π)=eiπJ^z/\hat{R}_z(\pi)=e^{-i\pi\hat{J}_z/\hbar}。并且将 eiαJ^y/e^{i\alpha\hat{J}_y/\hbar} 作展开有:

eiαJ^y/=I^+(iα/)J^y+(iα/)22!J^y2+e^{i\alpha\hat{J}_y/\hbar} = \hat{I} + (i\alpha/\hbar)\hat{J}_y + \frac{ (i\alpha/\hbar)^2}{2!}\hat{J}_y^2 + \cdots

利用 (a)(a) 中的结果,可以计算出:

R^z(π)J^yR^z(π)=J^y\hat{R}_z^\dagger(\pi)\hat{J}_y\hat{R}_z(\pi) = -\hat{J}_y

R^z(π)J^y2R^z(π)=R^z(π)J^yR^z(π)R^z(π)J^yR^z(π)=J^y2\hat{R}_z^\dagger(\pi)\hat{J}^2_y\hat{R}_z(\pi) = \hat{R}_z^\dagger(\pi)\hat{J}_y\hat{R}_z(\pi)\hat{R}_z^\dagger(\pi)\hat{J}_y\hat{R}_z(\pi) = \hat{J}_y^2

\cdots

R^z(π)J^ynR^z(π)=(1)nJ^yn\hat{R}_z^\dagger(\pi)\hat{J}^n_y\hat{R}_z(\pi) = (-1)^n \hat{J}_y^n

因此:

eiπJ^z/eiαJ^y/eiπJ^z/=I^+(iα/)R^z(π)J^yR^z(π)+(iα/)22!R^z(π)J^y2R^z(π)+=I^+(iα/)(J^y)+(iα/)22!(J^y)2+=eiαJ^y/\begin{aligned} e^{i\pi\hat{J}_z/\hbar}e^{i\alpha\hat{J}_y/\hbar}e^{-i\pi\hat{J}_z/\hbar} &= \hat{I} + (i\alpha/\hbar)\hat{R}_z^\dagger(\pi)\hat{J}_y\hat{R}_z(\pi) + \frac{ (i\alpha/\hbar)^2}{2!}\hat{R}_z^\dagger(\pi)\hat{J}^2_y\hat{R}_z(\pi) + \cdots \\ &= \hat{I} + (i\alpha/\hbar)(-\hat{J}_y) + \frac{ (i\alpha/\hbar)^2}{2!}(-\hat{J}_y)^2 + \cdots \\ &= e^{-i\alpha\hat{J}_y/\hbar} \end{aligned}

证毕。

# CG 系数的计算

\quad 计算两个角动量 j1=1j_1=1j2=1j_2=1 相加情况下的 Clebsch-Gordon\text{Clebsch-Gordon} 系数。

解:

j=2,m=2=m1=1,m2=1j=2,m=1=12m1=1,m2=0+12m1=0,m2=1j=2,m=0=12m1=0,m2=0+12m1=1,m2=1+12m1=1,m2=1j=2,m=1=12m1=1,m2=0+12m1=0,m2=1j=2,m=2=m1=1,m2=1\begin{aligned} &\ket{j=2,m=2} = \ket{m_1=1,m_2=1} \\ &\ket{j=2,m=1} = \frac{1}{\sqrt{2}}\ket{m_1=1,m_2=0} + \frac{1}{\sqrt{2}}\ket{m_1=0,m_2=1} \\ &\ket{j=2,m=0} = \frac{1}{\sqrt{2}}\ket{m_1=0,m_2=0} + \frac{1}{2}\ket{m_1=1,m_2=-1} + \frac{1}{2}\ket{m_1=-1,m_2=1} \\ &\ket{j=2,m=-1} = \frac{1}{\sqrt{2}}\ket{m_1=-1,m_2=0} + \frac{1}{\sqrt{2}}\ket{m_1=0,m_2=-1} \\ &\ket{j=2,m=-2} = \ket{m_1=-1,m_2=-1} \\ \end{aligned}

j=1,m=1=12m1=1,m2=0+12m1=0,m2=1j=1,m=0=12m1=0,m2=0+12m1=1,m2=1+12m1=1,m2=1j=1,m=1=12m1=1,m2=0+12m1=0,m2=1\begin{aligned} &\ket{j=1,m=1} = \frac{1}{\sqrt{2}}\ket{m_1=1,m_2=0} + \frac{1}{\sqrt{2}}\ket{m_1=0,m_2=1} \\ &\ket{j=1,m=0} = \frac{1}{\sqrt{2}}\ket{m_1=0,m_2=0} + \frac{1}{2}\ket{m_1=1,m_2=-1} + \frac{1}{2}\ket{m_1=-1,m_2=1} \\ &\ket{j=1,m=-1} = \frac{1}{\sqrt{2}}\ket{m_1=-1,m_2=0} + \frac{1}{\sqrt{2}}\ket{m_1=0,m_2=-1} \end{aligned}

j=0,m=0=m1=0,m2=0\ket{j=0,m=0} = \ket{m_1=0,m_2=0}

上面各个系数就是对应的 Clebsch-Gordon\text{Clebsch-Gordon} 系数。

# 角动量的施温格振子模型

\quad 假设

J^+=a^+a^;J^=a^a^+\hat{J}_+=\hbar\hat{a}^\dagger_+\hat{a}_- \quad;\quad \hat{J}_-=\hbar\hat{a}^\dagger_-\hat{a}_+

J^z=2(a^+a^+a^a^)=2(N^+N^)\hat{J}_z=\frac{\hbar}{2}(\hat{a}^\dagger_+\hat{a}_+-\hat{a}^\dagger_-\hat{a}_-)=\frac{\hbar}{2}(\hat{N}_+-\hat{N}_-)

其中 a^±,a^±\hat{a}_\pm,\hat{a}^\dagger_\pm 为两个独立的简谐振子的湮灭和产生算符,它们满足通常的简谐振子的对易关系。试证明:

[J^z,J^±]=±J^±;[J^+,J^]=2J^z[\hat{J}_z , \hat{J}_\pm]=\pm\hbar\hat{J}_\pm \quad;\quad [\hat{J}_+ , \hat{J}_-]=2\hbar\hat{J}_z

J^2=J^z2+12(J^+J^+J^J^+)=22N(N2+1)\hat{J}^2=\hat{J}_z^2+\frac{1}{2}(\hat{J}_+\hat{J}_-+\hat{J}_-\hat{J}_+)=\frac{\hbar^2}{2}N(\frac{N}{2}+1)

证明:
\quad 下面的证明推导利用到以下对易关系:

[a^±,a^±]=I^[\hat{a}_\pm,\hat{a}_\pm^\dagger] = \hat{I}

以及两个独立的谐振子的算符相互对易:

[a^+,a^]=0;[a^+,a^]=0;[\hat{a}_+,\hat{a}_-] = 0 ;\quad [\hat{a}^\dagger_+,\hat{a}_-] = 0;\quad\cdots

下面开始推导证明:

[J^z,J^+]=22([a^+a^+,a^+a^][a^a^,a^+a^])=22(a^+[a^+,a^+]a^+[a^+,a^+]a^+a^a^+[a^,a^]a^a^+a^[a^,a^])=22(a^+a^+0+a^+a^0)=2a^+a^=J^+\begin{aligned} [\hat{J}_z,\hat{J}_+] &= \frac{\hbar^2}{2} \left( [\hat{a}^\dagger_+\hat{a}_+,\hat{a}^\dagger_+\hat{a}_-] - [\hat{a}^\dagger_-\hat{a}_-,\hat{a}^\dagger_+\hat{a}_-] \right) \\ &= \frac{\hbar^2}{2} \left( \hat{a}^\dagger_{+}[\hat{a}_{+},\hat{a}^\dagger_{+}]\hat{a}_{-} + [\hat{a}^\dagger_{+},\hat{a}^\dagger_{+}]\hat{a}_{+}\hat{a}_{-} - \hat{a}^\dagger_{+}[\hat{a}^\dagger_{-},\hat{a}_{-}]\hat{a}_{-} - \hat{a}^\dagger_{+}\hat{a}^\dagger_{-}[\hat{a}_{-},\hat{a}_{-}] \right) \\ &= \frac{\hbar^2}{2} \left( \hat{a}_+\hat{a}_- + 0 + \hat{a}^\dagger_+\hat{a}_- - 0 \right) \\ &= \hbar^2 \hat{a}_+\hat{a}_- = \hbar \hat{J}_+ \end{aligned}

[J^z,J^]=22([a^+a^+,a^a^+][a^a^,a^a^+])=22(a^+[a^+,a^+]a^+[a^+,a^+]a^+a^a^[a^,a^]a^+[a^,a^]a^a^+)=22(0a^+a^a^a^+0)=2a^a^+=J^\begin{aligned} [\hat{J}_z,\hat{J}_-] &= \frac{\hbar^2}{2} \left( [\hat{a}^\dagger_+\hat{a}_+,\hat{a}^\dagger_-\hat{a}_+] - [\hat{a}^\dagger_-\hat{a}_-,\hat{a}^\dagger_-\hat{a}_+] \right) \\ &= \frac{\hbar^2}{2} \left( \hat{a}^\dagger_{+}[\hat{a}_{+},\hat{a}_{+}]\hat{a}_{-}^\dagger + [\hat{a}^\dagger_{+},\hat{a}_{+}]\hat{a}_{+}\hat{a}_{-}^\dagger - \hat{a}^\dagger_{-}[\hat{a}_{-},\hat{a}^\dagger_{-}]\hat{a}_{+} - [\hat{a}^\dagger_{-},\hat{a}^\dagger_{-}]\hat{a}_{-}\hat{a}_{+} \right) \\ &= \frac{\hbar^2}{2} \left( 0 - \hat{a}_{+}\hat{a}_{-}^\dagger - \hat{a}^\dagger_-\hat{a}_+ - 0 \right) \\ &= -\hbar^2\hat{a}^\dagger_-\hat{a}_+ = -\hbar\hat{J}_{-} \end{aligned}

[J^+,J^]=2[a^+a^,a^a^+]=2(a^[a^+,a^+]a^+a^+[a^,a^]a^+)=2(a^a^+a^+a^+)=2J^z\begin{aligned} [\hat{J}_+ , \hat{J}_-] &= \hbar^2 [\hat{a}^\dagger_{+}\hat{a}_{-},\hat{a}^\dagger_{-}\hat{a}_{+}] \\ &= \hbar^2 \left( \hat{a}_{-}^\dagger[\hat{a}^\dagger_{+},\hat{a}_{+}]\hat{a}_{-} + \hat{a}^\dagger_{+}[\hat{a}_{-},\hat{a}^\dagger_{-}]\hat{a}_{+} \right) \\ &= \hbar^2 \left( -\hat{a}^\dagger_{-}\hat{a}_{-} + \hat{a}^\dagger_{+}\hat{a}_{+} \right) \\ &= 2\hbar\hat{J}_z \end{aligned}

J^2=J^z2+12(J^+J^+J^J^+)=24(N^+N^)2+22(a^+a^a^a^++a^a^+a^+a^)=24(N^+N^)2+22(N^+(I^+a^a^)+N^(I^+a^+a^+))=24(N^+N^)2+22(N^++N^+2N^+N^)=24(N^+2+N^2+2N^++2N^+2N^+N^)=24((N^++N^)2+2(N^++N^))=22N^(N^2+1)\begin{aligned} \hat{J}^2 &= \hat{J}_z^2+\frac{1}{2}(\hat{J}_+\hat{J}_-+\hat{J}_-\hat{J}_+) \\ &= \frac{\hbar^2}{4}(\hat{N}_+-\hat{N}_-)^2 + \frac{\hbar^2}{2} \left( \hat{a}^\dagger_+\hat{a}_-\hat{a}^\dagger_-\hat{a}_+ + \hat{a}^\dagger_-\hat{a}_+\hat{a}^\dagger_+\hat{a}_- \right) \\ &= \frac{\hbar^2}{4}(\hat{N}_+-\hat{N}_-)^2 + \frac{\hbar^2}{2} \left( \hat{N}_{+}(\hat{I}+\hat{a}^\dagger_-\hat{a}_-) + \hat{N}_{-}(\hat{I}+\hat{a}^\dagger_+\hat{a}_+) \right) \\ &= \frac{\hbar^2}{4}(\hat{N}_+-\hat{N}_-)^2 + \frac{\hbar^2}{2} \left( \hat{N}_+ + \hat{N}_{-} + 2\hat{N}_+\hat{N}_- \right) \\ &= \frac{\hbar^2}{4} \left( \hat{N}^2_+ + \hat{N}^2_- + 2\hat{N}_+ + 2\hat{N}_{-} + 2\hat{N}_+\hat{N}_- \right) \\ &= \frac{\hbar^2}{4} \left( (\hat{N}_++\hat{N}_-)^2 + 2(\hat{N}_++\hat{N}_-) \right) \\ &= \frac{\hbar^2}{2} \hat{N} (\frac{\hat{N}}{2}+1) \end{aligned}

其中 N^=N^++N^\hat{N} = \hat{N}_++\hat{N}_-。至此,证毕。

# 散射理论习题

# 一维 δ 散射势

\quad 对于一个完全由 δ\delta 函数构成的一维散射势 V^(x)=gδ(xx0)\hat{V}(x)=g\delta(x-x_0),其中 gg 为常数。假设初始波函数为 ψi(x)=eikix\psi_i(x)=e^{ik_ix},利用 Lippmann-Schwinger\text{Lippmann-Schwinger} 方程
(a)(a) 找出散射波函数 ψi(+)(x)\psi_i^{(+)}(x)
(b) 求出反射率 RR 和穿透率 TT

解:
\quad (a)(a) Lippmann-Schwinger\text{Lippmann-Schwinger} 方程:

ψi(+)=ψi+1EiH^0+iϵV^ψi(+)\ket{\psi^{(+)}_i} = \ket{\psi_i} + \frac{1}{E_i-\hat{H}_0+i\epsilon}\hat{V}\ket{\psi^{(+)}_i}

其中 EiE_i 为初始波函数 ψi(x)=eikix\psi_i(x)=e^{ik_ix} 对应的能量。将上式左乘 x\bra{x},并插入一组坐标基矢完备集:

xψi(+)=xψi+dxx1EiH^0+iϵxxV^ψi(+)=xψi+dxdxx1EiH^0+iϵxxV^xxψi(+)=xψi+dxdxx1EiH^0+iϵxV(x)δ(xx)xψi(+)=xψi+dxx1EiH^0+iϵxV(x)ψi(+)(x)=xψi+2m2dxG+(x,x)V(x)ψi(+)(x)\begin{aligned} \braket{x|\psi^{(+)}_i} &= \braket{x|\psi_i} + \int dx' \bra{x} \frac{1}{E_i-\hat{H}_0+i\epsilon} \ket{x'} \bra{x'} \hat{V} \ket{\psi^{(+)}_i} \\ &= \braket{x|\psi_i} + \iint dx' dx'' \bra{x} \frac{1}{E_i-\hat{H}_0+i\epsilon} \ket{x'} \bra{x'} \hat{V} \ket{x''} \bra{x''} \ket{\psi^{(+)}_i} \\ &= \braket{x|\psi_i} + \iint dx' dx'' \bra{x} \frac{1}{E_i-\hat{H}_0+i\epsilon} \ket{x'} V(x') \delta(x'-x'') \bra{x''} \ket{\psi^{(+)}_i} \\ &= \braket{x|\psi_i} + \int dx' \bra{x} \frac{1}{E_i-\hat{H}_0+i\epsilon} \ket{x'} V(x') \psi^{(+)}_i(x') \\ &= \braket{x|\psi_i} + \frac{2m}{\hbar^2} \int dx'\ G_+(x,x') V(x') \psi^{(+)}_i(x') \end{aligned}

其中:

G+(x,x)=22mx1EiH^0+iϵx=22mdpdpxpp1EiH^0+iϵppx=22mdpdpxppppi22mp22m+iϵpx=22mdpdpeixp2πδ(pp)pi22mp22m+iϵeixp2π=12π+dkeik(xx)1ki2k2+iϵ=i2kieikixx\begin{aligned} G_+(x,x') &= \frac{\hbar^2}{2m} \bra{x} \frac{1}{E_i-\hat{H}_0+i\epsilon} \ket{x'} \\ &= \frac{\hbar^2}{2m} \iint dp dp' \braket{x|p} \bra{p} \frac{1}{E_i-\hat{H}_0+i\epsilon} \ket{p'} \braket{p'|x'} \\ &= \frac{\hbar^2}{2m} \iint dp dp' \braket{x|p} \frac{\braket{p|p'}}{\frac{p_i^2}{2m}-\frac{p'^2}{2m}+i\epsilon} \braket{p'|x'} \\ &= \frac{\hbar^2}{2m} \iint dp dp' \frac{e^{\frac{i}{\hbar}xp}}{\sqrt{2\pi\hbar}} \frac{\delta(p-p')}{\frac{p_i^2}{2m}-\frac{p'^2}{2m}+i\epsilon} \frac{e^{-\frac{i}{\hbar}x'p'}}{\sqrt{2\pi\hbar}} \\ &= \frac{1}{2\pi} \int^{+\infin}_{-\infin} dk\ e^{ik(x-x')} \frac{1}{k_i^2-k^2+i\epsilon} \\ &= -\frac{i}{2k_i} e^{ik_i|x-x'|} \end{aligned}

将其代入可得:

ψi(+)(x)=xψiim2kidxeikixxV(x)ψi(+)(x)=ψi(x)img2kidxeikixxδ(xx0)ψi(+)(x)=eikiximg2kieikixx0ψi(+)(x0)\begin{aligned} \psi^{(+)}_i(x) &= \braket{x|\psi_i} -i\frac{m}{\hbar^2k_i} \int dx' \ e^{ik_i|x-x'|} V(x') \psi^{(+)}_i(x') \\ &= \psi_i(x) -i\frac{mg}{\hbar^2k_i} \int dx' \ e^{ik_i|x-x'|} \delta(x'-x_0) \psi^{(+)}_i(x') \\ &= e^{ik_ix} -i\frac{mg}{\hbar^2k_i} e^{ik_i|x-x_0|} \psi^{(+)}_i(x_0) \end{aligned}

x=x0x=x_0,上式可化为:

ψi(+)(x0)=eikix0img2kiψi(+)(x0)ψi(+)(x0)=eikix01+img2ki\begin{aligned} &\psi^{(+)}_i(x_0) = e^{ik_ix_0} -i\frac{mg}{\hbar^2k_i} \psi^{(+)}_i(x_0) \\ \Longrightarrow& \psi^{(+)}_i(x_0) = \frac{e^{ik_ix_0}}{1+i\frac{mg}{\hbar^2k_i}} \end{aligned}

因此:

ψi(+)(x)=eikiximg2kieikixx0eikix01+img2ki={eikiximg2kieikix1+img2ki;xx0eikiximg2kieiki(2x0x)1+img2ki;x<x0\psi^{(+)}_i(x) = e^{ik_ix} -i\frac{mg}{\hbar^2k_i} \frac{e^{ik_i|x-x_0|}e^{ik_ix_0}}{1+i\frac{mg}{\hbar^2k_i}} = \begin{cases} e^{ik_ix} -i\frac{mg}{\hbar^2k_i} \frac{e^{ik_ix}}{1+i\frac{mg}{\hbar^2k_i}}; \quad x\ge x_0 \\\\ e^{ik_ix} -i\frac{mg}{\hbar^2k_i} \frac{e^{ik_i(2x_0-x)}}{1+i\frac{mg}{\hbar^2k_i}}; \quad x<x_0 \end{cases}

\quad (b) 设:

γ=mg2ki\gamma = \frac{mg}{\hbar^2k_i}

则:

ψi(+)(x)=eikixiγeikix1+iγ;xx0\psi^{(+)}_i(x) = e^{ik_ix} -i\gamma \frac{e^{ik_ix}}{1+i\gamma }; \quad x\ge x_0

讨论 xx0x\ge x_0 时的穿透几率流为:

jt=i2m[(ψi(+))xψi(+)ψi(+)x(ψi(+))]ex=km(1γ21+γ2)\begin{aligned} \vec{j}_{\text{t}} &= -\frac{i\hbar}{2m}\left[(\psi^{(+)}_i)^*\frac{\partial}{\partial x}\psi^{(+)}_i-\psi^{(+)}_i\frac{\partial}{\partial x}(\psi^{(+)}_i)^*\right] \vec{e}_x = \frac{\hbar k}{m}(1-\frac{\gamma^2}{1+\gamma^2}) \end{aligned}

入射几率流为:

jin=i2m[(ψi)xψiψix(ψi)]ex=km\vec{j}_{\text{in}} = -\frac{i\hbar}{2m}\left[(\psi_i)^*\frac{\partial}{\partial x}\psi_i-\psi_i\frac{\partial}{\partial x}(\psi_i)^*\right] \vec{e}_x = \frac{\hbar k}{m}

因此穿透率为:

T=jtjin=1γ21+γ2T = \frac{|\vec{j}_{\text{t}}|}{|\vec{j}_{\text{in}}|} = 1-\frac{\gamma^2}{1+\gamma^2}

反射率为:

R=1T=γ21+γ2R = 1-T = \frac{\gamma^2}{1+\gamma^2}

# 氢原子对电子的散射

\quad 讨论氢原子对电子的散射。在原子静态近似下,入射电子感受到的是一个固定的电势

V(r)=edrρ(r)rrV(\vec{r}) = -e \int d\vec{r}'\ \frac{\rho(\vec{r}')}{|\vec{r}-\vec{r}'|}

其中 ρ(r)\rho(\vec{r}') 是电荷密度分布:

ρ(r)=eδ3(r)eϕ(r)2\rho(\vec{r}) = e\delta^3(\vec{r})-e|\phi(\vec{r})|^2

第一项表示原子核的电荷,第二项是束缚电子的电荷分布。ϕ(r)\phi(\vec{r}) 是氢原子基态波函数

ϕ(r)=1(πa3)er/a\phi(\vec{r})=\frac{1}{\sqrt{(\pi a^3)}}e^{-r/a}

其中 a=1me2a=\frac{1}{me^2} 是波尔半径。
(a)(a) 证明势场 V(r)V(\vec{r}) 可以被简化为 V(r)=e2(1r+1a)e2r/aV(r)=-e^2(\frac{1}{r}+\frac{1}{a})e^{-2r/a}
(b) 假设入射电子对原子的可能畸变或极化是可以忽略的,且忽略入射电子和原子电子的交换效应,用一阶波恩近似计算势的散射振幅。
(c) 检验 ehe-h 散射过程的一阶玻恩近似的有效性。注意,如果 γ=e2\gamma=-e^2μ2/a\mu\approxeq 2/a,势场与 Yukawa\text{Yukawa}V(r)γeμrrV(r)\approxeq\gamma\frac{e^{-\mu r}}{r} 有相同的定性行为。

解:

(a)(a) 要证明势场 V(r)V(\vec{r}) 可以简化为 V(r)=e2(1r+1a)e2r/aV(r)=-e^2(\frac{1}{r}+\frac{1}{a})e^{-2r/a},我们将电荷密度分布 ρ(r)\rho(\vec{r}) 代入势能表达式中。首先,代入第一项 ρ1(r)=eδ3(r)\rho_1(\vec{r}) = e\delta^3(\vec{r}),我们得到:

V1(r)=edreδ3(r)rr=e2r\begin{aligned} V_1(\vec{r}) &= -e \int d\vec{r}'\ \frac{e\delta^3(\vec{r}')}{|\vec{r}-\vec{r}'|} = \frac{-e^2}{r} \end{aligned}

接下来,代入第二项 ρ2(r)=eϕ(r)2\rho_2(\vec{r}) = -e|\phi(\vec{r})|^2,其中 ϕ(r)=1(πa3)er/a\phi(\vec{r})=\frac{1}{\sqrt{(\pi a^3)}}e^{-r/a} 是氢原子基态波函数。我们得到:

V2(r)=edrρ2(r)rr=edreϕ(r)2rr=e2πa3dre2r/arr\begin{aligned} V_2(\vec{r}) &= -e \int d\vec{r}'\ \frac{\rho_2(\vec{r}')}{|\vec{r}-\vec{r}'|} = e \int d\vec{r}'\ \frac{e|\phi(\vec{r}')|^2}{|\vec{r}-\vec{r}'|} = \frac{e^2}{\pi a^3} \int d\vec{r}'\ \frac{e^{-2r'/a}}{|\vec{r}-\vec{r}'|} \end{aligned}

有一个公式,式中 r>(r<)r_>(r_<)r,rr,r' 中较大的 (较小的) 那一个,θ1,θ2,φ1,φ2\theta_1,\theta_2,\varphi_1,\varphi_2 分别是 r,r\vec{r},\vec{r}' 相关的角度:

1rr=4πl=0m=ll12l+1r<lr>l+1Ylm(θ1,φ1)Ylm(θ2,φ2)\begin{aligned} \frac{1}{|\vec{r}-\vec{r}'|} &= 4\pi \sum^{\infin}_{l=0} \sum^l_{m=-l} \frac{1}{2l+1} \frac{r^l_<}{r^{l+1}_>} Y^*_{lm}(\theta_1,\varphi_1) Y_{lm}(\theta_2,\varphi_2) \end{aligned}

利用到球谐函数的加法定理:

m=llYlm(θ1,φ1)Ylm(θ2,φ2)=2l+14πPl(cosθ)\sum^l_{m=-l} Y^*_{lm}(\theta_1,\varphi_1) Y_{lm}(\theta_2,\varphi_2) = \frac{2l+1}{4\pi} P_l(\cos\theta)

其中 θ\thetar,r\vec{r},\vec{r}' 的夹角。通过上述公式,可以化得:

V2(r)=e2πa3dre2r/al=0r<lr>l+1Pl(cosθ)=2e2a3l=0(0re2r/a(r)l+2rl+1dr+re2r/arl(r)l1dr)11Pl(cosθ)dcosθ\begin{aligned} V_2(\vec{r}) &= \frac{e^2}{\pi a^3} \int d\vec{r}'\ e^{-2r'/a} \sum^{\infin}_{l=0} \frac{r^l_<}{r^{l+1}_>} P_l(\cos\theta) \\ &= \frac{2e^2}{a^3} \sum^\infin_{l=0} \left( \int^r_0 e^{-2r'/a} \frac{(r')^{l+2}}{r^{l+1}}\ dr' + \int^\infin_r e^{-2r'/a} \frac{r^l}{(r')^{l-1}\ dr'} \right) \int^{-1}_1 P_l(\cos\theta)\ d\cos\theta \\ \end{aligned}

利用到积分 11Pl(x)dx=22l+1δl,0\int^1_{-1}P_l(x)\ dx=\frac{2}{2l+1}\delta_{l,0},上式可进一步化为:

V2(r)=4e2a3(0re2r/a(r)2rdr+re2r/ardr)V_2(\vec{r}) = -\frac{4e^2}{a^3} \left( \int^r_0 e^{-2r'/a} \frac{(r')^{2}}{r}\ dr' + \int^\infin_r e^{-2r'/a} r'\ dr' \right)

其中第一个积分:

1r0re2r/a(r)2dr=a2e2rara22e2raa34re2ra+a34r\frac{1}{r} \int^r_0 e^{-2r'/a} (r')^2\ dr' = -\frac{a}{2} e^{-\frac{2r}{a}}r - \frac{a^2}{2} e^{-\frac{2r}{a}} - \frac{a^3}{4r} e^{-\frac{2r}{a}} + \frac{a^3}{4r}

第二个积分:

re2r/ardr=a2e2rar+a24e2ra\int^\infin_r e^{-2r'/a} r'\ dr' = \frac{a}{2} e^{-\frac{2r}{a}}r + \frac{a^2}{4} e^{-\frac{2r}{a}}

将两积分代入得:

V2(r)=e2(1ae2ra1re2ra+1r)V_2(\vec{r}) = e^2 \left( -\frac{1}{a} e^{-\frac{2r}{a}} - \frac{1}{r} e^{-\frac{2r}{a}} + \frac{1}{r} \right)

最终得:

V(r)=V1(r)+V2(r)=e2(1r+1a)e2r/aV(\vec{r}) = V_1(\vec{r}) + V_2(\vec{r}) = -e^2(\frac{1}{r}+\frac{1}{a})e^{-2r/a}

(b) 根据一阶波恩近似,散射振幅 f(θ)f(\theta) 可以表示为:

f(θ)=2m2drV(r)eiqr=2m2drV(r)eiqrcosθf(\theta) = -\frac{2m}{\hbar^2} \int d\vec{r}\ V(\vec{r}) e^{-i\vec{q}\cdot\vec{r}} = -\frac{2m}{\hbar^2} \int d\vec{r}\ V(\vec{r}) e^{-iqr\cos\theta}

其中,mm 是约化质量,q=kfki\vec{q} = \vec{k}_f - \vec{k}_i 是传递动量,ki\vec{k}_ikf\vec{k}_f 分别是入射波和散射波的波矢量。代入势场 V(r)V(r) 的表达式,并进行积分计算,我们可以得到散射振幅的近似表达式:

f(θ)=2me22dr(1r+1a)e2raeiqrcosθf(\theta) = \frac{2me^2}{\hbar^2} \int d\vec{r}\ (\frac{1}{r}+\frac{1}{a})e^{-\frac{2r}{a}} e^{-iqr\cos\theta}

(c) 要检验 ehe-h 散射过程的一阶波恩近似的有效性,我们可以比较计算得到的散射截面和实验观测到的散射截面。如果理论计算得到的散射截面与实验观测到的散射截面吻合得较好,那么一阶波恩近似可以被视为有效近似。

# 有限范围拓展

证明 kcotδk\cot\delta 可以被写成如下形式:

kcotδ0=1a+12r0k2+O(k4)+k\cot\delta_0=-\frac{1}{a}+\frac{1}{2}r_0k^2+O(k^4)+\dots

其中

  • k2k^2 是在将 2/2m\hbar^2/2m 归一后的能量,mm 是约化质量
  • aa 是散射长度
  • r0r_0 是相互作用的有效范围
  • δ0\delta_0 是满足低能量 limk0δ0=ka\lim_{k\rightarrow0} \delta_0=-kaSS 波相移

注意,在低能量条件下,高阶项 O(k4)O(k^4) 可以忽略。对于短程势,例如square-well,Gaussian,Yukawa\text{square-well},\text{Gaussian},\text{Yukawa},且散射长度为较大值,参数 r0r_0 近似与势的范围有关。对于 aR1|a|R\gg 1,这个关系式对于范围为 RRsquare-well\text{square-well} 势是精确的。参见参考文献 [H.a.Bethe,PhysicalReview76,38(1949)]

证明:当能量较低时,满足

kcotδ0kcot(ka)k\cot\delta_0 \rightarrow k \cot(-ka)

再利用 cotx\cot x 的泰勒展开

cotx=1xx3+O(x3)\cot x = \frac{1}{x} - \frac{x}{3} + O(x^3)

因此得:

kcotδ0=k(1ka(ka)3+O(k3))=1a+ak23+O(k4)=1a+12r0k2+O(k4)+k\cot\delta_0 = k(\frac{1}{-ka}-\frac{(-ka)}{3}+O(k^3)) = -\frac{1}{a} + \frac{ak^2}{3} + O(k^4) = -\frac{1}{a}+\frac{1}{2}r_0k^2+O(k^4)+\dots

证毕。

# 硬球散射

\quad 考一个硬球散射势:

V(r)={0forr>a+forr<aV(r) = \begin{cases} 0 \quad &\text{for} \ r>a \\ +\infin \quad &\text{for} \ r<a \end{cases}

(a)(a) 导出 S\text{S}(l=0)(l=0) 相移的表达式。(你不需要知道球面贝塞尔函数的详细性质就可以做这个简单的问题!)
(b) 在极端低能量极限下,总截面 σ=(dσ/dΩ)dΩ\sigma=\int(d\sigma/d\Omega)d\Omega 是多少?将你的答案与几何截面 πa2\pi a^2 比较。
\quad 在这里,你可以不需要证明以下公式:

dσdΩ=f(θ)2\frac{d\sigma}{d\Omega}=|f(\theta)|^2

f(θ)=(1k)l=0+(2l+1)eiδlsinδlPl(cosθ)f(\theta)=(\frac{1}{k})\sum^{+\infin}_{l=0}(2l+1)e^{i\delta_l}\sin\delta_l P_l(\cos\theta)

(a)(a) 对于无限球深势,这个球是不可穿透的,因此:

Al(r)r=a=eiδl[cosδljl(ka)sinδlnl(ka)]=0A_l(r)\Big|_{r=a} = e^{i\delta_l} [\cos\delta_l j_l(ka) - \sin\delta_l n_l(ka)] = 0

因此:

tanδl=jl(ka)nl(ka)\tan\delta_l = \frac{j_l(ka)}{n_l(ka)}

l=0l=0 时,有:

tanδ0=sin(ka)/kacos(ka)/ka=tanka\tan\delta_0 = \frac{\sin(ka)/ka}{-\cos(ka)/ka} = -\tan ka

(b) 总散射截面为:

σ=f(θ)2dΩ\begin{aligned} \sigma_{\text{总}} &= \int |f(\theta)|^2 d\Omega \end{aligned}

若我们只考虑 l=0l=0,那么散射振幅有:

f(θ)=(1k)eiδ0sinδ0f(\theta)=(\frac{1}{k})e^{i\delta_0}\sin\delta_0

在低能量近似下:

sinδ0ka\sin\delta_0 \sim -ka

因此:

σ=a2dΩ=4πa2\sigma_{\text{总}} = \int a^2 d\Omega = 4\pi a^2

给出的总截面是几何截面 πR2\pi R^2 的 4 倍。

# 二次量子化

# 利用费米子湮灭与产生算符对易关系的证明题

考虑 2n2n 个算符:

γ^j=a^j+a^j\hat{\gamma}_j = \hat{a}_j + \hat{a}_j^\dagger

γ^n+j=i(a^ja^j)\hat{\gamma}_{n+j} = -i(\hat{a}_j-\hat{a}_j^\dagger)

其中 j=1,2,,nj=1,2,\dots,n 并且 $n$ 是偶数
(a)(a) 证明这些算符满足下面的代数性质,假设 a^\hat{a}a^\hat{a}^\dagger 是费米子的产生与湮灭算符:

γ^iγ^j+γ^jγ^i=2δij(i,j=1,,2n)\hat{\gamma}_i\hat{\gamma}_j+\hat{\gamma}_j\hat{\gamma}_i=2\delta_{ij}\quad(i,j=1,\dots,2n)

(b)(b) 证明算符 γ^0=i=12nγ^i\hat{\gamma}_0=\prod_{i=1}^{2n}\hat{\gamma}_i 与任何一个 γ^i\hat{\gamma}_i 都反对易,即:

γ^iγ^0+γ^0γ^i=0,γ^02=1(i=1,,n)\hat{\gamma}_i\hat{\gamma}_0+\hat{\gamma}_0\hat{\gamma}_i=0, \quad\hat{\gamma}_0^2=1\quad(i=1,\dots,n)

(c)(c) 证明 γ^0=exp(iπN^)\hat{\gamma}_0=\exp(i\pi\hat{N}),其中 N^\hat{N} 是粒子束算符:N^=i=1na^ia^i\hat{N}=\sum_{i=1}^n\hat{a}_i^\dagger\hat{a}_i

证明:
(a)\quad(a) 利用以下费米子产生与湮灭算符的反对易关系:

{{a^i,a^j}={a^i,a^j}=0{a^i,a^j}=δij\begin{cases} \{\hat{a}_i,\hat{a}_j\} = \{\hat{a}_i^\dagger,\hat{a}_j^\dagger\} = 0 \\ \{\hat{a}_i,\hat{a}_j^\dagger\} = \delta_{ij} \end{cases}

i,j=1,2,,ni,j=1,2,\dots,n,有:

γ^iγ^j+γ^jγ^i=(a^i+a^i)(a^j+a^j)+(a^j+a^j)(a^i+a^i)={a^i,a^j}+{a^i,a^j}+{a^i,a^j}+{a^i,a^j}=0+δij+δij+0=2δij\begin{aligned} \hat{\gamma}_i\hat{\gamma}_j+\hat{\gamma}_j\hat{\gamma}_i &= (\hat{a}_i + \hat{a}_i^\dagger)(\hat{a}_j + \hat{a}_j^\dagger)+(\hat{a}_j + \hat{a}_j^\dagger)(\hat{a}_i + \hat{a}_i^\dagger) \\ &= \{\hat{a}_i,\hat{a}_j\} + \{\hat{a}_i,\hat{a}^\dagger_j\} + \{\hat{a}^\dagger_i,\hat{a}_j\} + \{\hat{a}^\dagger_i,\hat{a}^\dagger_j\} \\ &= 0+\delta_{ij} + \delta_{ij} + 0 = 2\delta_{ij} \end{aligned}

γ^n+iγ^n+j+γ^n+jγ^n+i=(a^ia^i)(a^ja^j)(a^ja^j)(a^ia^i)={a^i,a^j}+{a^i,a^j}+{a^i,a^j}{a^i,a^j}=0+δij+δij0=2δij\begin{aligned} \hat{\gamma}_{n+i}\hat{\gamma}_{n+j}+\hat{\gamma}_{n+j}\hat{\gamma}_{n+i} &= -(\hat{a}_i - \hat{a}_i^\dagger)(\hat{a}_j - \hat{a}_j^\dagger)-(\hat{a}_j - \hat{a}_j^\dagger)(\hat{a}_i - \hat{a}_i^\dagger) \\ &= -\{\hat{a}_i,\hat{a}_j\} + \{\hat{a}_i,\hat{a}^\dagger_j\} + \{\hat{a}^\dagger_i,\hat{a}_j\} - \{\hat{a}^\dagger_i,\hat{a}^\dagger_j\} \\ &= -0+\delta_{ij} + \delta_{ij} - 0 = 2\delta_{ij} \end{aligned}

γ^iγ^n+j+γ^n+jγ^i=i(a^i+a^i)(a^ja^j)i(a^ja^j)(a^i+a^i)=i[{a^i,a^j}{a^i,a^j}+{a^i,a^j}{a^i,a^j}]=i(0δij+δij0)=0\begin{aligned} \hat{\gamma}_i\hat{\gamma}_{n+j}+\hat{\gamma}_{n+j}\hat{\gamma}_i &= -i(\hat{a}_i + \hat{a}_i^\dagger)(\hat{a}_j - \hat{a}_j^\dagger)-i(\hat{a}_j - \hat{a}_j^\dagger)(\hat{a}_i + \hat{a}_i^\dagger) \\ &= -i\left[ \{\hat{a}_i,\hat{a}_j\}-\{\hat{a}_i,\hat{a}^\dagger_j\} + \{\hat{a}^\dagger_i,\hat{a}_j\} - \{\hat{a}^\dagger_i,\hat{a}^\dagger_j\} \right] \\ &= -i(0-\delta_{ij}+\delta_{ij}-0) = 0 \end{aligned}

综合上面三式,最终可以得到:

γ^iγ^j+γ^jγ^i=2δij(i,j=1,,2n)\hat{\gamma}_i\hat{\gamma}_j+\hat{\gamma}_j\hat{\gamma}_i=2\delta_{ij}\quad(i,j=1,\dots,2n)

证毕。

(b)\quad(b) 根据题目定义可得:

γ^iγ^0+γ^0γ^i=γ^ik=12nγ^k+(k=12nγ^k)γ^i=γ^i(k=1i1γ^k)γ^i(k=i+12nγ^k)+(k=12nγ^k)γ^i\begin{aligned} \hat{\gamma}_i\hat{\gamma}_0+\hat{\gamma}_0\hat{\gamma}_i &= \hat{\gamma}_i \prod_{k=1}^{2n}\hat{\gamma}_k + \left(\prod_{k=1}^{2n}\hat{\gamma}_k\right) \hat{\gamma}_i \\ &= \hat{\gamma}_i \left(\prod_{k=1}^{i-1}\hat{\gamma}_k\right) \hat{\gamma}_i \left(\prod_{k=i+1}^{2n}\hat{\gamma}_k\right) + \left(\prod_{k=1}^{2n}\hat{\gamma}_k\right) \hat{\gamma}_i \end{aligned}

利用 γ^iγ^j+γ^jγ^i=2δij,(i,j=1,,2n)\hat{\gamma}_i\hat{\gamma}_j+\hat{\gamma}_j\hat{\gamma}_i=2\delta_{ij},\ (i,j=1,\dots,2n) 的性质,可以将上式的 γ^i\hat{\gamma}_i 一步步 “前进”:

γ^iγ^0+γ^0γ^i=(1)γ^1γ^i(k=2i1γ^k)γ^i(k=i+12nγ^k)+(k=12nγ^k)γ^i=(1)2γ^1γ^2γ^i(k=3i1γ^k)γ^i(k=i+12nγ^k)+(k=12nγ^k)γ^i==(1)i1(k=1i1γ^k)γ^iγ^i(k=i+12nγ^k)+(k=12nγ^k)γ^i==(1)i1(1)2ni(k=12nγ^k)γ^i+(k=12nγ^k)γ^i=(k=12nγ^k)γ^i+(k=12nγ^k)γ^i=0\begin{aligned} \hat{\gamma}_i\hat{\gamma}_0+\hat{\gamma}_0\hat{\gamma}_i &= (-1) \hat{\gamma}_1\hat{\gamma}_i \left(\prod_{k=2}^{i-1}\hat{\gamma}_k\right) \hat{\gamma}_i \left(\prod_{k=i+1}^{2n}\hat{\gamma}_k\right) + \left(\prod_{k=1}^{2n}\hat{\gamma}_k\right) \hat{\gamma}_i \\ &= (-1)^2 \hat{\gamma}_1\hat{\gamma}_2\hat{\gamma}_i \left(\prod_{k=3}^{i-1}\hat{\gamma}_k\right) \hat{\gamma}_i \left(\prod_{k=i+1}^{2n}\hat{\gamma}_k\right) + \left(\prod_{k=1}^{2n}\hat{\gamma}_k\right) \hat{\gamma}_i \\ &= \cdots \\ &= (-1)^{i-1} \left(\prod_{k=1}^{i-1}\hat{\gamma}_k\right) \hat{\gamma}_i \hat{\gamma}_i \left(\prod_{k=i+1}^{2n}\hat{\gamma}_k\right) + \left(\prod_{k=1}^{2n}\hat{\gamma}_k\right) \hat{\gamma}_i \\ &= \cdots \\ &= (-1)^{i-1}(-1)^{2n-i} \left(\prod_{k=1}^{2n}\hat{\gamma}_k\right) \hat{\gamma}_i + \left(\prod_{k=1}^{2n}\hat{\gamma}_k\right) \hat{\gamma}_i \\ &= -\left(\prod_{k=1}^{2n}\hat{\gamma}_k\right) \hat{\gamma}_i + \left(\prod_{k=1}^{2n}\hat{\gamma}_k\right) \hat{\gamma}_i = 0 \end{aligned}

同理 “一步步前进” 可得:

γ^02=(i=12nγ^i)(i=12nγ^i)=(i=12n1γ^i)(i=12n1γ^i)γ^2n2(1)2n1=(i=12n1γ^i)(i=12n1γ^i)(1)2n1==(1)2n1×(1)2n2××(1)=(1)(2n1)n=1\begin{aligned} \hat{\gamma}_0^2 &= \left(\prod_{i=1}^{2n}\hat{\gamma}_i\right)\left(\prod_{i=1}^{2n}\hat{\gamma}_i\right) \\ &= \left(\prod_{i=1}^{2n-1}\hat{\gamma}_i\right)\left(\prod_{i=1}^{2n-1}\hat{\gamma}_i\right) \hat{\gamma}_{2n}^2 (-1)^{2n-1} \\ &= \left(\prod_{i=1}^{2n-1}\hat{\gamma}_i\right)\left(\prod_{i=1}^{2n-1}\hat{\gamma}_i\right)(-1)^{2n-1} \\ &= \cdots \\ &= (-1)^{2n-1}\times(-1)^{2n-2}\times\cdots\times(-1) \\ &= (-1)^{(2n-1)n} = 1 \end{aligned}

证毕。

(c)\quad(c) 根据题目有:

γ^jγ^n+j=(a^j+a^j)[i(a^ja^j)]=i(2a^ja^j1)=i(2N^i1)\hat{\gamma}_j\hat{\gamma}_{n+j} = (\hat{a}_j+\hat{a}_j^\dagger)\left[-i(\hat{a}_j-\hat{a}_j^\dagger)\right] = -i(2\hat{a}_j^\dagger\hat{a}_j-1) = -i(2\hat{N}_i-1)

其中 N^i\hat{N}_iii 态的粒子数算符。那么利用上式和 γ^iγ^j+γ^jγ^i=2δij,(i,j=1,,2n)\hat{\gamma}_i\hat{\gamma}_j+\hat{\gamma}_j\hat{\gamma}_i=2\delta_{ij},\ (i,j=1,\dots,2n) 的性质,可得:

γ^0=i=12nγ^i=(i=1nγ^i)(j=n+12nγ^j)=(1)n1(i=1n1γ^i)(j=n+12n1γ^j)γ^nγ^2n=(1)n1(i)(i=1n1γ^i)(j=n+12n1γ^j)(2N^n1)=(1)(n1)+(n2)(i)2(i=1n2γ^i)(j=n+12n2γ^j)(2N^n1)(2N^n11)==(1)n(n1)2(i)ni=1n(2N^i1)=(1)n22i=1n(2N^i1)=i=1n(2N^i1)\begin{aligned} \hat{\gamma}_0 &= \prod_{i=1}^{2n}\hat{\gamma}_i = \left(\prod_{i=1}^{n}\hat{\gamma}_i\right) \left(\prod_{j=n+1}^{2n}\hat{\gamma}_j\right) \\ &= (-1)^{n-1} \left(\prod_{i=1}^{n-1}\hat{\gamma}_i\right) \left(\prod_{j=n+1}^{2n-1}\hat{\gamma}_j\right) \hat{\gamma}_{n}\hat{\gamma}_{2n} \\ &= (-1)^{n-1} (-i) \left(\prod_{i=1}^{n-1}\hat{\gamma}_i\right) \left(\prod_{j=n+1}^{2n-1}\hat{\gamma}_j\right) (2\hat{N}_{n}-1) \\ &= (-1)^{(n-1)+(n-2)} (-i)^2 \left(\prod_{i=1}^{n-2}\hat{\gamma}_i\right) \left(\prod_{j=n+1}^{2n-2}\hat{\gamma}_j\right) (2\hat{N}_{n}-1)(2\hat{N}_{n-1}-1) \\ &= \cdots \\ &= (-1)^{\frac{n(n-1)}{2}} (-i)^n \prod_{i=1}^n (2\hat{N}_i-1) \\ &= (-1)^\frac{n^2}{2} \prod_{i=1}^n (2\hat{N}_i-1) = \prod_{i=1}^n (2\hat{N}_i-1) \end{aligned}

由于 N^i\hat{N}_i 是费米子的粒子数算符,其作用到右矢的结果要么是 11,要么是 00,因此 (2N^i1)(2\hat{N}_i-1) 可等效为 (1)N^i+1(-1)^{\hat{N}_i+1},因此上式化为:

γ^0=i=1n(2N^i1)=i=1n(1)N^i+1=(1)i=1nN^i(1)n=(1)N^\hat{\gamma}_0 = \prod_{i=1}^n (2\hat{N}_i-1) = \prod_{i=1}^n (-1)^{\hat{N}_i+1} = (-1)^{\sum_{i=1}^n\hat{N}_i} (-1)^n = (-1)^{\hat{N}}

而明显有:

cos(πN^)=(1)N^;sin(πN^)=0\cos(\pi\hat{N}) = (-1)^{\hat{N}}; \quad \sin(\pi\hat{N}) = 0

因此:

γ^0=(1)N^+0=cos(πN^)+isin(πN^)=exp(iπN^)\hat{\gamma}_0 = (-1)^{\hat{N}} + 0 = \cos(\pi\hat{N}) + i\sin(\pi\hat{N}) = \exp(i\pi\hat{N})

证毕。

# 单体与双体算符的基底变换

\quad 证明单体算符 F^\hat{F} 与二体算符 V^\hat{V} 在改变单粒子基底的情况下其形式具有不变性。

α=iiiα\ket{\alpha} = \sum_i \ket{i} \braket{i|\alpha}

其中单体、双体算符的表达形式为

F^=α,βαF^βa^αa^β\hat{F}=\sum_{\alpha,\beta}\braket{\alpha|\hat{F}|\beta}\hat{a}^\dagger_\alpha\hat{a}_\beta

V^=14αβγδαβV^γδa^αa^βa^δa^γ\hat{V}=\frac{1}{4}\sum_{\alpha\beta\gamma\delta}\braket{\alpha\beta|\hat{V}|\gamma\delta}\hat{a}^\dagger_\alpha\hat{a}^\dagger_\beta\hat{a}_\delta\hat{a}_\gamma

证明:
\quad 将单体算符式插入一个完备集 iii\sum_i\ket{i}\bra{i},并利用真空态 0\ket{0} 可得:

F^=α,βαF^βa^αa^β=iα,βαF^βa^αiia^β=iα,βαF^βa^αa^i00a^ia^β\begin{aligned} \hat{F} &= \sum_{\alpha,\beta}\braket{\alpha|\hat{F}|\beta}\hat{a}^\dagger_\alpha\hat{a}_\beta \\ &= \sum_i \sum_{\alpha,\beta}\braket{\alpha|\hat{F}|\beta}\hat{a}^\dagger_\alpha \ket{i}\bra{i} \hat{a}_\beta \\ &= \sum_i \sum_{\alpha,\beta}\braket{\alpha|\hat{F}|\beta}\hat{a}^\dagger_\alpha \hat{a}^\dagger_i \ket{0}\bra{0} \hat{a}_i \hat{a}_\beta \\ \end{aligned}

可以到玻色子产生与湮灭算符的对易关系 [a^α,a^i]=[a^α,a^i]=0[\hat{a}_\alpha^\dagger,\hat{a}_i^\dagger]=[\hat{a}_\alpha,\hat{a}_i]=0,或费米子的反对易关系 {a^α,a^i}={a^α,a^i}=0\{\hat{a}_\alpha^\dagger,\hat{a}_i^\dagger\}=\{\hat{a}_\alpha,\hat{a}_i\}=0,可将上式进一步写为:

F^=iα,βαF^βa^ia^α00a^βa^i=iα,βa^iααF^ββa^i=ia^iF^a^i=ijka^ijjF^kka^i=ijkjF^ka^jiia^k=jkjF^ka^ja^k\begin{aligned} \hat{F} &= \sum_i \sum_{\alpha,\beta}\braket{\alpha|\hat{F}|\beta}\hat{a}^\dagger_i\hat{a}^\dagger_\alpha \ket{0}\bra{0} \hat{a}_\beta \hat{a}_i \\ &= \sum_i \sum_{\alpha,\beta} \hat{a}^\dagger_i \ket{\alpha} \braket{\alpha|\hat{F}|\beta} \bra{\beta} \hat{a}_i \\ &= \sum_i \hat{a}^\dagger_i \hat{F} \hat{a}_i \\ &= \sum_{ijk} \hat{a}^\dagger_i \ket{j} \braket{j|\hat{F}|k} \bra{k} \hat{a}_i \\ &= \sum_{ijk} \braket{j|\hat{F}|k} \hat{a}^\dagger_j \ket{i} \bra{i} \hat{a}_k \\ &= \sum_{jk} \braket{j|\hat{F}|k} \hat{a}^\dagger_j \hat{a}_k \end{aligned}

这样就证明了级数改变基底,单体算符的表达式形式也不变。同理,对于双体算符也有:

V^=14αβγδαβV^γδa^αa^βa^δa^γ=14αβγδijαβV^γδa^αa^βijija^δa^γ=14αβγδijαβV^γδa^αa^βa^ia^j00a^ja^ia^δa^γ=14αβγδijαβV^γδa^ia^ja^αa^β00a^δa^γa^ja^i=14ija^ia^jV^a^ja^i=14ijklnma^ia^jklklV^nmnma^ja^i=14ijklnmklV^nma^ka^lijija^ma^n=14klnmklV^nma^ka^la^ma^n\begin{aligned} \hat{V} &= \frac{1}{4}\sum_{\alpha\beta\gamma\delta}\braket{\alpha\beta|\hat{V}|\gamma\delta}\hat{a}^\dagger_\alpha\hat{a}^\dagger_\beta\hat{a}_\delta\hat{a}_\gamma \\ &= \frac{1}{4}\sum_{\alpha\beta\gamma\delta}\sum_{ij}\braket{\alpha\beta|\hat{V}|\gamma\delta}\hat{a}^\dagger_\alpha\hat{a}^\dagger_\beta \ket{ij}\bra{ij} \hat{a}_\delta\hat{a}_\gamma \\ &= \frac{1}{4}\sum_{\alpha\beta\gamma\delta}\sum_{ij}\braket{\alpha\beta|\hat{V}|\gamma\delta}\hat{a}^\dagger_\alpha\hat{a}^\dagger_\beta \hat{a}^\dagger_i\hat{a}^\dagger_j \ket{0}\bra{0} \hat{a}_j\hat{a}_i \hat{a}_\delta\hat{a}_\gamma \\ &= \frac{1}{4}\sum_{\alpha\beta\gamma\delta}\sum_{ij}\braket{\alpha\beta|\hat{V}|\gamma\delta} \hat{a}^\dagger_i\hat{a}^\dagger_j \hat{a}^\dagger_\alpha\hat{a}^\dagger_\beta \ket{0}\bra{0} \hat{a}_\delta\hat{a}_\gamma \hat{a}_j\hat{a}_i \\ &= \frac{1}{4}\sum_{ij} \hat{a}^\dagger_i\hat{a}^\dagger_j \hat{V} \hat{a}_j\hat{a}_i \\ &= \frac{1}{4} \sum_{ij} \sum_{kl} \sum_{nm} \hat{a}^\dagger_i\hat{a}^\dagger_j \ket{kl} \braket{kl|\hat{V}|nm} \bra{nm} \hat{a}_j\hat{a}_i \\ &= \frac{1}{4} \sum_{ij} \sum_{kl} \sum_{nm} \braket{kl|\hat{V}|nm} \hat{a}^\dagger_k\hat{a}^\dagger_l \ket{ij}\bra{ij} \hat{a}_m\hat{a}_n \\ &= \frac{1}{4} \sum_{kl nm} \braket{kl|\hat{V}|nm} \hat{a}^\dagger_k\hat{a}^\dagger_l \hat{a}_m\hat{a}_n \end{aligned}

可见变换任意基底,双体算符的表所示形式没有改变。证毕。

# 均匀物质的稳定性和平衡条件

\quad 考虑一个由 NN 个粒子组成的系统在绝对零度下的热力学极限,这个系统被限制在一个体积为 VV 的盒子里,处于能量为 EE 的密度均匀状态。其中密度 ρ=NV\rho=\frac{N}{V},每个粒子的能量 ϵ(ρ)=EN\epsilon(\rho)=\frac{E}{N}
(a)(a) 证明压力为 P=ρ2ϵρP=\rho^2\frac{\partial\epsilon}{\partial\rho}
(b)(b) 证明自束缚无约束的物质团的平衡密度,通常称为饱和密度,出现在 ϵ(ρ)\epsilon(\rho) 最小强度处。
(c)(c) 证明化学势 μ=E(N+1)E(N)\mu=E(N+1)-E(N)μ=ϵ+Pρ\mu=\epsilon+\frac{P}{\rho} 给出,因此,自束缚无约束体系的平衡密度为 μ=ϵ\mu=\epsilon
(d)(d) 检测关于长波密度波动的稳定性如下:考虑把体积 VV 分成两半,如果一半密度为 ρ+δ\rho+\delta,另一半密度为 ρδ\rho-\delta,计算总能量。证明当 2ρ2[ρϵ(ρ)]>0\frac{\partial^2}{\partial\rho^2}\left[\rho\epsilon(\rho)\right]>0,即 Pρ>0\frac{\partial P}{\partial\rho}>0,该能量超过均匀构型的能量,系统也因此是稳定的。当我们随后检测关于利用了随机相位近似的有限波长波动的稳定性,该结果将在长波极限中恢复。

证明:
(a)\quad(a) 对这样的系统作体积功,满足:

W=ΔE=PΔVΔEΔV=P\begin{aligned} W = \Delta E = -P\Delta V \quad \Longrightarrow \quad \frac{\Delta E}{\Delta V} = -P \end{aligned}

利用题目条件:

ΔE=Δ[Nϵ(ρ)]=NΔϵ(ρ)\begin{aligned} \Delta E = \Delta \left[N\epsilon(\rho)\right] = N \Delta\epsilon(\rho) \end{aligned}

ΔV=Δ(Nρ)=NΔ(1ρ)=Nρ2Δρ\begin{aligned} \Delta V = \Delta (\frac{N}{\rho}) = N \Delta (\frac{1}{\rho}) = -\frac{N}{\rho^2}\Delta\rho \end{aligned}

结合上三式可得:

P=ΔEΔV=ρ2ΔϵΔρ=ρ2ϵρ\begin{aligned} P = -\frac{\Delta E}{\Delta V} = \rho^2 \frac{\Delta\epsilon}{\Delta\rho} = \rho^2\frac{\partial\epsilon}{\partial\rho} \end{aligned}

证毕。

(b)\quad(b) 处于平衡时能量应该是极小值,即 Eρ=0\frac{\partial E}{\partial\rho}=0。由于 E=Nϵ(ρ)E=N\epsilon(\rho),因此当粒子数保持不变时,此时也满足 ϵρ=0\frac{\partial \epsilon}{\partial\rho}=0,也就是平衡密度出现在 ϵ(ρ)\epsilon(\rho) 极小值处。

(c)\quad(c) 根据密度 ρ=NV\rho=\frac{N}{V},和每个粒子的能量 ϵ(ρ)=EN\epsilon(\rho)=\frac{E}{N},可有:

E(N+1)E(N)=(N+1)ϵ(ρ=N+1V)Nϵ(ρ=NV)=ϵ(N+1)+[ϵ(N+1)ϵ(N)]N=ϵ(N+1)+[ϵρ(N+1VNV)]N=ϵ(N+1)+[Pρ2(N+1VNV)]N=ϵ(N+1)+Pρ=ϵ+Pρ=μ\begin{aligned} E(N+1) - E(N) &= (N+1)\epsilon(\rho=\frac{N+1}{V}) - N\epsilon(\rho=\frac{N}{V}) \\ &= \epsilon_{(N+1)} + \left[\epsilon_{(N+1)}-\epsilon_{(N)}\right]N \\ &= \epsilon_{(N+1)} + \left[\frac{\partial\epsilon}{\partial\rho}(\frac{N+1}{V}-\frac{N}{V})\right] N \\ &= \epsilon_{(N+1)} + \left[\frac{P}{\rho^2}(\frac{N+1}{V}-\frac{N}{V})\right] N \\ &= \epsilon_{(N+1)} + \frac{P}{\rho} = \epsilon + \frac{P}{\rho} = \mu \end{aligned}

而正如 (b)(b) 所说,平衡密度处满足 ϵρ=0\frac{\partial \epsilon}{\partial\rho}=0,因此 P=ρ2ϵρ=0P = \rho^2\frac{\partial\epsilon}{\partial\rho}=0。根据上式可知此时 μ=ϵ\mu=\epsilon

(d)\quad(d) 将体系分为两份,一份的能量为:

E1=V2(ρ+δ)ϵρ+δ=V2(ρ+δ)(ϵ+ϵρδ+122ϵρ2δ2)E_1 = \frac{V}{2} (\rho+\delta) \epsilon_{\rho+\delta} = \frac{V}{2} (\rho+\delta)(\epsilon+\frac{\partial\epsilon}{\partial\rho}\delta+\frac{1}{2}\frac{\partial^2\epsilon}{\partial\rho^2}\delta^2)

另一份能量为:

E2=V2(ρδ)ϵρδ=V2(ρδ)(ϵϵρδ+122ϵρ2δ2)E_2 = \frac{V}{2} (\rho-\delta) \epsilon_{\rho-\delta} = \frac{V}{2} (\rho-\delta)(\epsilon-\frac{\partial\epsilon}{\partial\rho}\delta+\frac{1}{2}\frac{\partial^2\epsilon}{\partial\rho^2}\delta^2)

因此总能量为:

E=E1+E2=Vρϵ+δ2(Vϵρ+V2ρ2ϵρ2)E = E_1+E_2 = V\rho\epsilon + \delta^2 \left(V\frac{\partial\epsilon}{\partial\rho}+\frac{V}{2}\rho\frac{\partial^2\epsilon}{\partial\rho^2}\right)

若体系处于稳定的平衡态,要满足 Eρ=0\frac{\partial E}{\partial\rho}=0,且 2Eρ2>0\frac{\partial^2E}{\partial\rho^2}>0,此时

EE1E2=δ2(Vϵρ+V2ρ2ϵρ2)=δ2V2ρ2ϵρ2>0E-E_1-E_2 = \delta^2 \left(V\frac{\partial\epsilon}{\partial\rho}+\frac{V}{2}\rho\frac{\partial^2\epsilon}{\partial\rho^2}\right) = \delta^2 \frac{V}{2}\rho\frac{\partial^2\epsilon}{\partial\rho^2} > 0

也就是说体系平衡时两部分的能量之和超过均匀构型的能量。对于稳定平衡态的第二个条件,忽略掉二阶小量,可得:

2Eρ2=2ϵρ+ρ2ϵρ2=2ρ2[ρϵ(ρ)]>0\frac{\partial^2E}{\partial\rho^2} = 2\frac{\partial\epsilon}{\partial\rho} + \rho\frac{\partial^2\epsilon}{\partial\rho^2} = \frac{\partial^2}{\partial\rho^2}\left[\rho\epsilon(\rho)\right]>0

证毕。

# 均匀费米气体

\quad 对于一个平移不变系统,Hartree-Fock\text{Hartree-Fock} 方程的一个特别简单的稳定解是 Slater\text{Slater} 行列式。在具有周期边界条件下,归一化波函数有如下形式:

ψkn=1L1L2L3ei(kn1x1+kn2x2+kn3x3)χs\psi_{k_n} = \frac{1}{\sqrt{L_1L_2L_3}}e^{i(k_{n_1}x_1+k_{n_2}x_2+k_{n_3}x_3)}\chi_s

其中 kni=2πLinik_{n_i}=\frac{2\pi}{L_i}n_iχs\chi_s 表示自旋、同位旋、颜色或任何其他非空间量子数的自旋量。如果与非空间量子数相关的简并度记为 nsn_s,则被占据最低的动量态为 M=NnsM=\frac{N}{n_s}。在 DD 维的连续极限下,

n=1MF(kn)(L2π)DkFdDkF(k)\sum^M_{n=1}F(k_n) \rightarrow \left(\frac{L}{2\pi}\right)^D\int^{k_F} d^Dk\ F(k)

并且,一个对所有的 kk 进行小于费米动量 kFk_F 的简单积分,是由密度决定的

ρ=NLD=ns0kFdDk(2π)D\rho=\frac{N}{L^D}=n_s\int^{k_F}_0\frac{d^Dk}{(2\pi)^D}

(a)(a) 考虑一个无相互作用的气体,ψT^ψ\braket{\psi|\hat{T}|\psi} 是精确的能量。对于非相对论性和超相对论性的自旋 1/21/2 的三维费米子,求出每个粒子的能量作为密度函数。
(b)(b) 作为一个具体的物理例子,计算在非相对论性中子气体中,压强 (dynes/cm2)(\text{dynes/cm}^2) 作为质量密度 (gm/cm3)(\text{gm/cm}^3) 的函数。考虑到弱相互作用允许质子和电子形成中子(和逃逸的中微子),因此

(EFe+me)+(EFp+mp)=EFn+mn(E_F|_e+m_e)+(E_F|_p+m_p)=E_F|_n+m_n

计算非相对论性质子、中子和超相对论性电子的中性混合物的压强与质量密度的关系。
(c)(c) 考虑一个自旋简并度为 ns=2S+1n_s=2S+1,质量为 mm,具有两体势相互作用的 DD 维费米子系统

V(rirj)=αδ(rirj)V(\vec{r}_i-\vec{r}_j)=-\alpha\delta(\vec{r}_i-\vec{r}_j)

其中 α>0\alpha>0。计算热力学极限下费米气体中每个粒子的能量 HN=ϵ(n)\frac{\braket{H}}{N}=\epsilon(n)。确定系统在 1,2,31,2,3 维情况下是否稳定。
(d)(d) 现在,加上一个排斥的三体势

V(ri,rj,rk)=βδ(rirj)δ(rirk)V(\vec{r}_i,\vec{r}_j,\vec{r}_k)=\beta\delta(\vec{r}_i-\vec{r}_j)\delta(\vec{r}_i-\vec{r}_k)

其中 β>0\beta>0。计算在三维情况下 ϵ(n)\epsilon(n)。当 ns=2n_s=2 时,与 (c)(c) 的结果进行比较,解释其物理意义。
解释为什么 ns=4n_s=4 的情况与核物质有关,即一个具有等密度的中子核质子通过核力相互作用,但却没有库仑力作用。求出 α\alphaβ\beta 的值,使 ϵ(ρ)\epsilon(\rho)ρ0=0.16fm3\rho_0=0.16\text{fm}^{-3} 时达到最小值 ϵ(ρ0)=16MeV\epsilon(\rho_0)=-16\text{MeV}。画出这些值的 ϵ(ρ)\epsilon(\rho) 草图。利用上一个问题的结果,给出系统具有正压强的密度区域,以及系统在长波长密度波动下稳定的密度区域。计算平衡密度对应的费米动量 kFk_F 处的压缩模量 κ=kF22ϵkF2\kappa=k^2_F\frac{\partial^2\epsilon}{\partial k_F^2},并与实验值 κ=200MeV\kappa=200\text{MeV} 进行比较。任何测量一桶液态 3He^3\text{He} 中的 κ\kappa ?又如何在有限的原子核中测量呢?

解:
(a)\quad(a) 考虑自旋为 1/21/2 无相互作用的费米气体,其粒子数为:

N=2×43πkF3×(L2π)3=(L2π)383πkF3N = 2\times\frac{4}{3}\pi k_F^3\times(\frac{L}{2\pi})^3 = (\frac{L}{2\pi})^3 \frac{8}{3}\pi k_F^3

系统的粒子密度为:

ρ=NL3=kF33π2\rho = \frac{N}{L^3} = \frac{k_F^3}{3\pi^2}

\quad 考虑非相对论性的情况,粒子的能量为 2k22m\frac{\hbar^2k^2}{2m}。则体系的总能量为:

E=2(L2π)30kFd3k(2k22m)=(L2π)34π25mkF5E = 2 (\frac{L}{2\pi})^3 \int^{k_F}_0 d^3k \ (\frac{\hbar^2k^2}{2m}) = (\frac{L}{2\pi})^3 \frac{4\pi\hbar^2}{5m} k_F^5

可以得到非相对论情况,系统中粒子平均能量作为密度的函数为:

ϵ(ρ)=EN=3210mkF2=3102m(3π2ρ)23\epsilon(\rho) = \frac{E}{N} = \frac{3\hbar^2}{10m}k_F^2 = \frac{3}{10}\frac{\hbar^2}{m}(3\pi^2\rho)^{\frac{2}{3}}

\quad 对于超相对论性的粒子,每个粒子的动能为 cp=ckcp=c\hbar k,因此系统的总能量为:

E=2(L2π)30kFd3k(ck)=34ckFE = 2 (\frac{L}{2\pi})^3 \int^{k_F}_0 d^3k \ (c\hbar k) = \frac{3}{4}c\hbar k_F

因此平均能量为:

ϵ(ρ)=EN=34c(3π2ρ)13\epsilon(\rho) = \frac{E}{N} = \frac{3}{4}c\hbar (3\pi^2\rho)^{\frac{1}{3}}

(b)\quad(b) 利用公式 P=ρ2ϵρP=\rho^2\frac{\partial\epsilon}{\partial\rho},非相对论性中子气体中的压强公式:

Pn=ρn2ρn(3102mn(3π2ρn)23)=25mn(3π2)23ρn53=25mn83(3π2)23nn53P_n=\rho^2_n\frac{\partial}{\partial\rho_n}\left(\frac{3}{10}\frac{\hbar^2}{m_n}(3\pi^2\rho_n)^{\frac{2}{3}}\right) = \frac{\hbar^2}{5m_n}(3\pi^2)^\frac{2}{3}\rho^\frac{5}{3}_n = \frac{\hbar^2}{5m_n^\frac{8}{3}}(3\pi^2)^\frac{2}{3}n^\frac{5}{3}_n

其中 nn=mnρnn_n=m_n\rho_n 是中子气体的质量密度。

(c)\quad(c) 我们用 kχ\ket{\vec{k}\chi} 来表征一个单粒子态,其中 k\vec{k}表征粒子的动量,χ\chi 表征自旋。将相互作用项 v(rirj)=αδ(rirj)v(\vec{r}_i-\vec{r}_j)=-\alpha\delta(\vec{r}_i-\vec{r}_j) 写成二次量子化形式:

V^=12k1χ1k2χ2k3χ3k4χ4k1χ1k2χ2V^k3χ3k4χ4a^k1χ1a^k2χ2a^k4χ4a^k3χ3\hat{\mathcal{V}} = \frac{1}{2}\sum_{\vec{k}_1\chi_1}\sum_{\vec{k}_2\chi_2}\sum_{\vec{k}_3\chi_3}\sum_{\vec{k}_4\chi_4} \bra{\vec{k}_1\chi_1\vec{k}_2\chi_2}\hat{V}\ket{\vec{k}_3\chi_3\vec{k}_4\chi_4} \hat{a}^\dagger_{\vec{k}_1\chi_1}\hat{a}^\dagger_{\vec{k}_2\chi_2}\hat{a}_{\vec{k}_4\chi_4}\hat{a}_{\vec{k}_3\chi_3}

其中:

k1χ1k2χ2V^k3χ3k4χ4=d3rd3rV(rr)k1χ1rrk3χ3k2χ2rrk4χ4=d3rαk1χ1rrk3χ3k2χ2rrk4χ4=α(LD)2d3rek1rek3rek2rek4rδχ1,χ3δχ2,χ4=αLDδ(k1+k3k2+k4)δχ1,χ3δχ2,χ4\begin{aligned} \bra{\vec{k}_1\chi_1\vec{k}_2\chi_2}\hat{V}\ket{\vec{k}_3\chi_3\vec{k}_4\chi_4} &= \int d^3r' \int d^3r'' V(\vec{r}'-\vec{r}'') \braket{\vec{k}_1\chi_1|\vec{r}'} \braket{\vec{r}'|\vec{k}_3\chi_3} \braket{\vec{k}_2\chi_2|\vec{r}''} \braket{\vec{r}''|\vec{k}_4\chi_4} \\ &= -\int d^3r'\ \alpha \braket{\vec{k}_1\chi_1|\vec{r}'} \braket{\vec{r}'|\vec{k}_3\chi_3} \braket{\vec{k}_2\chi_2|\vec{r}'} \braket{\vec{r}'|\vec{k}_4\chi_4} \\ &= -\frac{\alpha}{(L^D)^2} \int d^3r'\ e^{-\vec{k}_1\cdot\vec{r}'}e^{\vec{k}_3\cdot\vec{r}'}e^{-\vec{k}_2\cdot\vec{r}'}e^{\vec{k}_4\cdot\vec{r}'} \delta_{\chi_1,\chi_3} \delta_{\chi_2,\chi_4} \\ &= - \frac{\alpha}{L^D} \delta(-\vec{k}_1+\vec{k}_3-\vec{k}_2+\vec{k}_4) \delta_{\chi_1,\chi_3} \delta_{\chi_2,\chi_4} \end{aligned}

因此:

V^=α2LDk1χ1k2χ2k3k4δk1+k2,k3+k4a^k1χ1a^k2χ2a^k4χ2a^k3χ1\hat{\mathcal{V}} = - \frac{\alpha}{2L^D} \sum_{\vec{k}_1\chi_1}\sum_{\vec{k}_2\chi_2}\sum_{\vec{k}_3}\sum_{\vec{k}_4} \delta_{\vec{k}_1+\vec{k}_2,\vec{k}_3+\vec{k}_4} \hat{a}^\dagger_{\vec{k}_1\chi_1}\hat{a}^\dagger_{\vec{k}_2\chi_2}\hat{a}_{\vec{k}_4\chi_2}\hat{a}_{\vec{k}_3\chi_1}

假若体系的粒子数表象的态记作 F\ket{F},则相互作用项的平均值为:

V=FV^F=α2LDk1χ1k2χ2k3k4δk1+k2,k3+k4Fa^k1χ1a^k2χ2a^k4χ2a^k3χ1F\braket{V} = \bra{F}\hat{\mathcal{V}}\ket{F} = - \frac{\alpha}{2L^D} \sum_{\vec{k}_1\chi_1}\sum_{\vec{k}_2\chi_2}\sum_{\vec{k}_3}\sum_{\vec{k}_4} \delta_{\vec{k}_1+\vec{k}_2,\vec{k}_3+\vec{k}_4} \bra{F}\hat{a}^\dagger_{\vec{k}_1\chi_1}\hat{a}^\dagger_{\vec{k}_2\chi_2}\hat{a}_{\vec{k}_4\chi_2}\hat{a}_{\vec{k}_3\chi_1}\ket{F}

因此 F\ket{F} 是一个占据数不是 00 就是 11 的单粒子态的集合。因此上式中的矩阵元非零的唯一方法是湮灭和产生算符恰好配对。其配对条件就是 (k1χ1)=(k3χ1),(k2χ2)=(k4χ2)(\vec{k}_1\chi_1)=(\vec{k}_3\chi_1),\ (\vec{k}_2\chi_2)=(\vec{k}_4\chi_2),或 (k1χ1)=(k4χ2),(k2χ2)=(k3χ1)(\vec{k}_1\chi_1)=(\vec{k}_4\chi_2),\ (\vec{k}_2\chi_2)=(\vec{k}_3\chi_1)。因此:

V=α2LD[k1χ1k2χ2Fa^k1χ1a^k2χ2a^k2χ2a^k1χ1F+k1k2χ1Fa^k1χ1a^k2χ1a^k1χ1a^k2χ1F]=α2LD[N2(2S+1)2+N2(2S+1)]=αLDN2(2S+1)(S+1)\begin{aligned} \braket{V} &= - \frac{\alpha}{2L^D} \left[\sum_{\vec{k}_1\chi_1}\sum_{\vec{k}_2\chi_2} \bra{F}\hat{a}^\dagger_{\vec{k}_1\chi_1}\hat{a}^\dagger_{\vec{k}_2\chi_2}\hat{a}_{\vec{k}_2\chi_2}\hat{a}_{\vec{k}_1\chi_1}\ket{F} + \sum_{\vec{k}_1}\sum_{\vec{k}_2} \sum_{\chi_1} \bra{F}\hat{a}^\dagger_{\vec{k}_1\chi_1}\hat{a}^\dagger_{\vec{k}_2\chi_1}\hat{a}_{\vec{k}_1\chi_1}\hat{a}_{\vec{k}_2\chi_1}\ket{F}\right] \\ &= - \frac{\alpha}{2L^D} \left[ N^2(2S+1)^2 + N^2(2S+1)\right] \\ &= - \frac{\alpha}{L^D} N^2 (2S+1)(S+1) \end{aligned}

因此对于每个粒子的平均相互作用能为:

v(ρ)=VN=αρ(2S+1)(S+1)v(\rho) = \frac{\braket{V}}{N} = -\alpha\rho (2S+1)(S+1)

\quad 对于三维情况,计算出每个粒子的平均动能为 t(ρ)=3210m[3(2π)3ρ4π(2S+1)]23t(\rho)=\frac{3\hbar^2}{10m}\left[\frac{3(2\pi)^3\rho}{4\pi(2S+1)}\right]^{\frac{2}{3}}。热力学极限下费米气体中每个粒子的能量为:

ϵ(ρ)=HN=t(ρ)+v(ρ)=3210m[3(2π)3ρ4π(2S+1)]23αρ(2S+1)(S+1)\epsilon(\rho) = \frac{\braket{H}}{N} = t(\rho) + v(\rho) = \frac{3\hbar^2}{10m}\left[\frac{3(2\pi)^3\rho}{4\pi(2S+1)}\right]^{\frac{2}{3}} - \alpha\rho (2S+1)(S+1)

\quad 对于二维情况,我们可以计算出每个粒子的平均动能为 t(ρ)=24m[4πρ2S+1]t(\rho)=\frac{\hbar^2}{4m}\left[\frac{4\pi\rho}{2S+1}\right]。热力学极限下费米气体中每个粒子的能量为:

ϵ(ρ)=t(ρ)+v(ρ)=24m[4πρ2S+1]αρ(2S+1)(S+1)\epsilon(\rho) = t(\rho) + v(\rho) = \frac{\hbar^2}{4m}\left[\frac{4\pi\rho}{2S+1}\right] - \alpha\rho (2S+1)(S+1)

\quad 对于一维情况,我们可以计算出每个粒子的平均动能为 t(ρ)=26m[πρ2S+1]2t(\rho)=\frac{\hbar^2}{6m}\left[\frac{\pi\rho}{2S+1}\right]^2。热力学极限下费米气体中每个粒子的能量为:

ϵ(ρ)=t(ρ)+v(ρ)=26m[πρ2S+1]2αρ(2S+1)(S+1)\epsilon(\rho) = t(\rho) + v(\rho) = \frac{\hbar^2}{6m}\left[\frac{\pi\rho}{2S+1}\right]^2 - \alpha\rho (2S+1)(S+1)

\quad 若体系要平衡,能量要处于极小值,其条件等价为 ϵ(ρ)ρ=0,2ϵ(ρ)ρ2>0\frac{\partial\epsilon(\rho)}{\partial\rho}=0,\ \frac{\partial^2\epsilon(\rho)}{\partial\rho^2}>0。对于三维情况,虽然总存在某一个 ρ\rho 值使得 ϵ(ρ)ρ=0\frac{\partial\epsilon(\rho)}{\partial\rho}=0,但 2ϵ(ρ)ρ2<0\frac{\partial^2\epsilon(\rho)}{\partial\rho^2}<0,因此体系没有稳定的平衡点;对于二维情况,ϵ(ρ)ρ\frac{\partial\epsilon(\rho)}{\partial\rho} 一般等于一个不为零的常量,因此不存在平衡点;只有一维的情况,存在某某一个 ρ\rho 值使得 ϵ(ρ)ρ=0\frac{\partial\epsilon(\rho)}{\partial\rho}=0,且满足 2ϵ(ρ)ρ2>0\frac{\partial^2\epsilon(\rho)}{\partial\rho^2}>0,因此存在稳定平衡点。

(d)\quad(d) 将三体算符 W(ri,rj,rk)=βδ(rirj)δ(rirk)W(\vec{r}_i,\vec{r}_j,\vec{r}_k)=\beta\delta(\vec{r}_i-\vec{r}_j)\delta(\vec{r}_i-\vec{r}_k) 二次量子化后:

W^=16k1χ1,,k6χ6k1χ1k2χ2k3χ3W^k4χ4k5χ5k6χ6a^k1χ1a^k2χ2a^k3χ3a^k6χ6a^k5χ5a^k4χ4\hat{\mathcal{W}} = \frac{1}{6} \sum_{\vec{k}_1\chi_1,\cdots,\vec{k}_6\chi_6} \bra{\vec{k}_1\chi_1\vec{k}_2\chi_2\vec{k}_3\chi_3} \hat{W} \ket{\vec{k}_4\chi_4\vec{k}_5\chi_5\vec{k}_6\chi_6} \hat{a}^\dagger_{\vec{k}_1\chi_1}\hat{a}^\dagger_{\vec{k}_2\chi_2}\hat{a}^\dagger_{\vec{k}_3\chi_3}\hat{a}_{\vec{k}_6\chi_6}\hat{a}_{\vec{k}_5\chi_5}\hat{a}_{\vec{k}_4\chi_4}

其中:

k1χ1k2χ2k3χ3W^k4χ4k5χ5k6χ6=βδ(r1r2)δ(r1r3)k1χ1r1r1k4χ4k2χ2r2r2k5χ5k3χ3r3r3k6χ6dr1dr2dr3=β(L3)3ei(k4+k5+k6k1k2k3)r1dr1δχ1,χ4δχ2,χ5δχ3,χ6=β(L3)2δk1+k2+k3,k4+k5+k6δχ1,χ4δχ2,χ5δχ3,χ6\begin{aligned} \bra{\vec{k}_1\chi_1\vec{k}_2\chi_2\vec{k}_3\chi_3} \hat{W} \ket{\vec{k}_4\chi_4\vec{k}_5\chi_5\vec{k}_6\chi_6} &= \iiint \beta\delta(\vec{r}_1-\vec{r}_2)\delta(\vec{r}_1-\vec{r}_3) \braket{\vec{k}_1\chi_1|\vec{r}_1} \braket{\vec{r}_1|\vec{k}_4\chi_4} \braket{\vec{k}_2\chi_2|\vec{r}_2} \braket{\vec{r}_2|\vec{k}_5\chi_5} \braket{\vec{k}_3\chi_3|\vec{r}_3} \braket{\vec{r}_3|\vec{k}_6\chi_6} d\vec{r}_1 d\vec{r}_2 d\vec{r}_3 \\ &= \frac{\beta}{(L^3)^3} \int e^{i(\vec{k}_4+\vec{k}_5+\vec{k}_6-\vec{k}_1-\vec{k}_2-\vec{k}_3)\cdot\vec{r}_1} d\vec{r}_1 \ \delta_{\chi_1,\chi_4} \delta_{\chi_2,\chi_5} \delta_{\chi_3,\chi_6} \\ &= \frac{\beta}{(L^3)^2} \delta_{\vec{k}_1+\vec{k}_2+\vec{k}_3,\vec{k}_4 +\vec{k}_5+\vec{k}_6} \delta_{\chi_1,\chi_4} \delta_{\chi_2,\chi_5} \delta_{\chi_3,\chi_6} \end{aligned}

因此

FW^F=β6(L3)2k1,,k6χ1,χ2,χ3δk1+k2+k3,k4+k5+k6Fa^k1χ1a^k2χ2a^k3χ3a^k6χ3a^k5χ2a^k4χ1F\braket{F|\hat{\mathcal{W}}|F} = \frac{\beta}{6(L^3)^2} \sum_{\vec{k}_1,\cdots,\vec{k}_6} \sum_{\chi_1,\chi_2,\chi_3} \delta_{\vec{k}_1+\vec{k}_2+\vec{k}_3,\vec{k}_4 +\vec{k}_5+\vec{k}_6} \bra{F} \hat{a}^\dagger_{\vec{k}_1\chi_1}\hat{a}^\dagger_{\vec{k}_2\chi_2}\hat{a}^\dagger_{\vec{k}_3\chi_3}\hat{a}_{\vec{k}_6\chi_3}\hat{a}_{\vec{k}_5\chi_2}\hat{a}_{\vec{k}_4\chi_1} \ket{F}

矩阵元非零的方法就是湮灭与产生算符配对,配对条件为:

  1. (k1χ1)=(k4χ1)(\vec{k}_1\chi_1) = (\vec{k}_4\chi_1) ; (k2χ2)=(k5χ2)(\vec{k}_2\chi_2) = (\vec{k}_5\chi_2) ; (k3χ3)=(k6χ3)(\vec{k}_3\chi_3) = (\vec{k}_6\chi_3) ~~~ N3(2S+1)3N^3(2S+1)^3
  2. (k1χ1)=(k4χ1)(\vec{k}_1\chi_1) = (\vec{k}_4\chi_1) ; (k2χ2)=(k6χ3)(\vec{k}_2\chi_2) = (\vec{k}_6\chi_3) ; (k3χ3)=(k5χ2)(\vec{k}_3\chi_3) = (\vec{k}_5\chi_2) ~~~ N3(2S+1)2N^3(2S+1)^2
  3. (k1χ1)=(k5χ2)(\vec{k}_1\chi_1) = (\vec{k}_5\chi_2) ; (k2χ2)=(k4χ1)(\vec{k}_2\chi_2) = (\vec{k}_4\chi_1) ; (k3χ3)=(k6χ3)(\vec{k}_3\chi_3) = (\vec{k}_6\chi_3) ~~~ N3(2S+1)2N^3(2S+1)^2
  4. (k1χ1)=(k5χ2)(\vec{k}_1\chi_1) = (\vec{k}_5\chi_2) ; (k2χ2)=(k6χ3)(\vec{k}_2\chi_2) = (\vec{k}_6\chi_3) ; (k3χ3)=(k4χ1)(\vec{k}_3\chi_3) = (\vec{k}_4\chi_1) ~~~ N3(2S+1)N^3(2S+1)
  5. (k1χ1)=(k6χ3)(\vec{k}_1\chi_1) = (\vec{k}_6\chi_3) ; (k2χ2)=(k5χ2)(\vec{k}_2\chi_2) = (\vec{k}_5\chi_2) ; (k3χ3)=(k4χ1)(\vec{k}_3\chi_3) = (\vec{k}_4\chi_1) ~~~ N3(2S+1)2N^3(2S+1)^2
  6. (k1χ1)=(k6χ3)(\vec{k}_1\chi_1) = (\vec{k}_6\chi_3) ; (k2χ2)=(k4χ1)(\vec{k}_2\chi_2) = (\vec{k}_4\chi_1) ; (k3χ3)=(k5χ2)(\vec{k}_3\chi_3) = (\vec{k}_5\chi_2) ~~~ N3(2S+1)N^3(2S+1)

因此当 ns=(2S+1)=2n_s=(2S+1)=2 时,有:

FW^F=β6(L3)2N3[(2S+1)3+(2S+1)2+(2S+1)2+(2S+1)+(2S+1)2+(2S+1)]=4β(L3)2N3=4βρ2N\begin{aligned} \braket{F|\hat{\mathcal{W}}|F} &= \frac{\beta}{6(L^3)^2} N^3\left[(2S+1)^3+(2S+1)^2+(2S+1)^2+(2S+1)+(2S+1)^2+(2S+1)\right] \\ &= \frac{4\beta}{(L^3)^2} N^3 =4\beta\rho^2 N \end{aligned}

每个粒子的平均三体排斥势为:

w(ρ)=FW^FN=4βρ2w(\rho) = \frac{\braket{F|\hat{\mathcal{W}}|F}}{N} = 4\beta\rho^2

(c)(c) 可知每个粒子的平均二体吸引势和平均动能为:

v(ρ)=3αρ;t(ρ)=3210m(3π2ρ)23v(\rho) = - 3\alpha\rho \quad;\quad t(\rho) = \frac{3\hbar^2}{10m} (3\pi^2\rho)^{\frac{2}{3}}

因此粒子的平均能量为:

ϵ(ρ)=3210m(3π2ρ)233αρ+4βρ2\epsilon(\rho) = \frac{3\hbar^2}{10m} (3\pi^2\rho)^{\frac{2}{3}} - 3\alpha\rho + 4\beta\rho^2

这种情况下,总是可以存在一个 ρ\rho 值使得 ϵρ=0\frac{\partial\epsilon}{\partial\rho}=0,从而体系处于平衡点;而且只要 β\beta 值合适,也可以满足 2ϵρ2>0\frac{\partial^2\epsilon}{\partial\rho^2}>0 从而有稳定的平衡点。