# Exercise 1: Unitary and Hermitian

\quad Consider the following matrices

U1=(eiδcosθeiδsinθeiδsinθeiδcosθ),δ0U2=(1eiπ/2eiπ/21)U3=12(1eiθeiθ1)U_1=\left(\begin{matrix} e^{-i\delta}\cos\theta & -e^{i\delta}\sin\theta \\\\ e^{i\delta}\sin\theta & e^{i\delta}\cos\theta \end{matrix}\right),\delta\ne0;U_2=\left(\begin{matrix} -1 & e^{-i\pi/2} \\\\ e^{i\pi/2} & 1 \end{matrix}\right) ;U_3=\frac{1}{\sqrt{2}}\left(\begin{matrix} 1 & e^{-i\theta} \\\\ e^{i\theta} & -1 \end{matrix}\right)

Which of these matrices is unitary? Hermitian? Explain why.

Solution:
\quadFor U1U_1

U1=(U1)T=(eiδcosθeiδsinθeiδsinθeiδcosθ)U1U_1^\dagger = (U_1^*)^T = \left(\begin{matrix} e^{i\delta}\cos\theta & e^{-i\delta}\sin\theta \\\\ -e^{-i\delta}\sin\theta & e^{-i\delta}\cos\theta \end{matrix}\right) \ne U_1

then

U1U1=(eiδcosθeiδsinθeiδsinθeiδcosθ)(eiδcosθeiδsinθeiδsinθeiδcosθ)=(1001)=U1U1U_1U_1^\dagger = \left(\begin{matrix} e^{-i\delta}\cos\theta & -e^{i\delta}\sin\theta \\\\ e^{i\delta}\sin\theta & e^{i\delta}\cos\theta \end{matrix}\right) \left(\begin{matrix} e^{i\delta}\cos\theta & e^{-i\delta}\sin\theta \\\\ -e^{-i\delta}\sin\theta & e^{-i\delta}\cos\theta \end{matrix}\right) = \left(\begin{matrix} 1 & 0 \\ 0 &1 \end{matrix}\right) = U_1^\dagger U_1

So U1U_1 is Unitary, but is not hermitian.
\quadFor U2U_2

U2=(U2)T=(1eiπ/2eiπ/21)=U2U_2^\dagger = (U_2^*)^T = \left(\begin{matrix} -1 & e^{-i\pi/2} \\\\ e^{i\pi/2} & 1 \end{matrix}\right) = U_2

then

U2U2=(1eiπ/2eiπ/21)(1eiπ/2eiπ/21)=(02i2i0)U_2U_2^\dagger = \left(\begin{matrix} -1 & e^{-i\pi/2} \\\\ e^{i\pi/2} & 1 \end{matrix}\right) \left(\begin{matrix} -1 & e^{i\pi/2} \\\\ e^{-i\pi/2} & 1 \end{matrix}\right) = \left(\begin{matrix} 0 & -2i \\ -2i & 0 \end{matrix}\right)

So U2U_2 is hermitian, but is not unitary.
\quadFor U3U_3

U3=(U3)T=12(1eiθeiθ1)=U3U_3^\dagger = (U_3^*)^T = \frac{1}{\sqrt{2}}\left(\begin{matrix} 1 & e^{-i\theta} \\\\ e^{i\theta} & -1 \end{matrix}\right) = U_3

then

U3U3=12(1eiθeiθ1)(1eiθeiθ1)=(1001)=U3U3U_3U_3^\dagger = \frac{1}{2}\left(\begin{matrix} 1 & e^{-i\theta} \\\\ e^{i\theta} & -1 \end{matrix}\right) \left(\begin{matrix} 1 & e^{-i\theta} \\\\ e^{i\theta} & -1 \end{matrix}\right) = \left(\begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix}\right) = U_3^\dagger U_3

So U3U_3 is hermitian and unitary.

# Exercise 2: Density matrix

\quadConsider the two following matrices ρ1=(1/21/41/41/2)\rho_1=\left(\begin{matrix} 1/2 & 1/4 \\ 1/4 & 1/2 \end{matrix}\right) and ρ2=(1/21/21/21/2)\rho_2=\left(\begin{matrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{matrix}\right). Which one represent a mixed state? Explain why? For the other one, write down the corresponding pure state.

Solution:
\quad For pure state, it has the following property

tr(ρ2)=1tr(\rho^2) = 1

For mixed state, it has the following property

tr(ρ2)<1tr(\rho^2) < 1

We can judge pure state and mixed state by their different properties.
\quad For ρ1\rho_1

tr(ρ12)=5/8<1tr(\rho_1^2) = 5/8 < 1

So ρ1\rho_1 represent a mixed state. For ρ2\rho_2

tr(ρ2)=1tr(\rho_2) = 1

So ρ2\rho_2 represent a pure state. Write down the corresponding pure state, as

ψ=121+122\ket{\psi} = \frac{1}{\sqrt{2}} \ket{1} + \frac{1}{\sqrt{2}} \ket{2}

1\ket{1} and 2\ket{2} are normalized and orthogonal to each other.

# Exercise 3: Atomic transitions

Which of the following transitions of the cesium atom are electric dipole-allowed? Which transitions can be considered as cycling (closed transitions)?

6S12,F=3,mF=25D32,F=4,mF=26S12,F=4,mF=46P32,F=5,mF=56P12,F=3,mF=27D52,F=3,mF=26S12,F=3,mF=06P12,F=3,mF=06P12,F=3,mF=25D32,F=2,mF=16S12,F=4,mF=46P32,F=5,mF=5\begin{aligned} \ket{6S_{\frac{1}{2}},F=3,m_F=2} &\rightarrow \ket{5D_{\frac{3}{2}},F=4,m_F=2} \\ \ket{6S_{\frac{1}{2}},F=4,m_F=4} &\rightarrow \ket{6P_{\frac{3}{2}},F=5,m_F=5} \\ \ket{6P_{\frac{1}{2}},F=3,m_F=2} &\rightarrow \ket{7D_{\frac{5}{2}},F=3,m_F=2} \\ \ket{6S_{\frac{1}{2}},F=3,m_F=0} &\rightarrow \ket{6P_{\frac{1}{2}},F=3,m_F=0} \\ \ket{6P_{\frac{1}{2}},F=3,m_F=2} &\rightarrow \ket{5D_{\frac{3}{2}},F=2,m_F=1} \\ \ket{6S_{\frac{1}{2}},F=4,m_F=-4} &\rightarrow \ket{6P_{\frac{3}{2}},F=5,m_F=-5} \end{aligned}

Solution:
\quad Electric dipole-allowed transitions satisfy the selection rules, as

ΔL=±1;ΔJ=0,±1;ΔF=0,±1;ΔmF=0,±1\Delta L = \pm1 \ ;\ \Delta J=0,\pm1\ ;\ \Delta F=0,\pm1\ ;\ \Delta m_F=0,\pm 1

Based on the selection rules, the following transitions are electric dipole-allowed:

6S12,F=4,mF=46P32,F=5,mF=56S12,F=3,mF=06P12,F=3,mF=06P12,F=3,mF=25D32,F=2,mF=16S12,F=4,mF=46P32,F=5,mF=5\begin{aligned} \ket{6S_{\frac{1}{2}},F=4,m_F=4} &\rightarrow \ket{6P_{\frac{3}{2}},F=5,m_F=5} \\ \ket{6S_{\frac{1}{2}},F=3,m_F=0} &\rightarrow \ket{6P_{\frac{1}{2}},F=3,m_F=0} \\ \ket{6P_{\frac{1}{2}},F=3,m_F=2} &\rightarrow \ket{5D_{\frac{3}{2}},F=2,m_F=1} \\ \ket{6S_{\frac{1}{2}},F=4,m_F=-4} &\rightarrow \ket{6P_{\frac{3}{2}},F=5,m_F=-5} \end{aligned}

Cycling (closed) transitions are those that start and end in the same hyperfine level. From the provided transitions, the following transitions can be considered cycling (closed):

6S12,F=3,mF=06P12,F=3,mF=0\ket{6S_{\frac{1}{2}},F=3,m_F=0} \rightarrow \ket{6P_{\frac{1}{2}},F=3,m_F=0}

# Exercise 4: Intensity and Rabi frequency

\quad Calculate the Rabi frequency of an atomic transition driven by a light field of intensity 1W/cm21W/cm^2. The relevant dipole matrix element is d=4.2a.u.d=4.2a.u. (the dipole is given in atomic units =qa0=qa_0).
\quad This level of intensity (1W/cm2)(1W/cm^2) is obtained at the focus of a Gaussian laser beam where the waist is w0=60μmw_0=60\mu m. What is the total power of the laser beam?

Solution:
\quad For Rabi frequency, we can use the formula:

ΩR=dE\Omega_R = \frac{dE}{\hbar}

where ΩR\Omega_R is the Rabi frequency, dd is the dipole matrix element, EE is the electric field amplitude, and \hbar is the reduced Planck's constant.
\quad Given that the intensity of the light field is 1W/cm21W/cm^2, we can calculate the electric field amplitude using the formula:

I=12cϵ0E2I = \frac{1}{2} c \epsilon_0 E^2

where II is the intensity of the light field, cc is the speed of light, ϵ0\epsilon_0 is the vacuum permittivity.
\quad We can solve for EE :

E=2Icϵ0E = \sqrt{\frac{2I}{c\epsilon_0}}

And then we can calculate the Rabi frequency:

ΩR=d2Icϵ0\Omega_R = \frac{d}{\hbar} \sqrt{\frac{2I}{c\epsilon_0}}

\quad To calculate the total power of the laser beam, we can use the formula:

P=Iπw02=(1W/cm2)×π×60μm1.13×104WP = I \pi w_0^2 = (1W/cm^2) \times \pi \times 60\mu m \approx 1.13\times 10^{-4} W

where PP is the total power of the laser beam.

# Exercise 5: Light-atom interaction

\quad We consider a 2-level atom interacting with a linearly polarized light field. The levels are denoted as g,e\ket{g},\ket{e}. The light field is EL=E0cos(ωLt)ez\vec{E}_L=E_0 \cos(\omega_Lt)\vec{e}_z. The detuning of the field from the respective atomic transition is Δ=ωLωeg\Delta=\omega_L-\omega_{eg}.
\quad Apply the rotating frame transformation U=(100eiωLt)U=\left(\begin{matrix}1 & 0 \\ 0 & e^{i\omega_Lt} \end{matrix}\right) to the system and simplify the Schrödinger equation using the so-called rotating wave approximation. The rotating wave approximation consists in neglecting the fast-oscillating terms in the Hamiltonian written in the rotating frame. Show that an effective Hamiltonian very similar to that described in the lectures for a two-level atom interacting with a circularly polarized light can be obtained, expressed with the relevant Rabi coupling ΩL\Omega_L and detuning Δ\Delta. Please pay attention to provide the details of the derivation.

Solution:
\quad we have the following two types of Schrödinger equations in Schrödinger picture and rotating frame picture:

iddtψS=H^SψS;iddtψR=H^RψRi\hbar\frac{d}{dt}\ket{\psi}^\mathcal{S} = \hat{H}^\mathcal{S}\ket{\psi}^\mathcal{S}\ ;\ i\hbar\frac{d}{dt}\ket{\psi}^\mathcal{R} = \hat{H}^\mathcal{R}\ket{\psi}^\mathcal{R}

where S\mathcal{S} represents in Schrödinger picture, R\mathcal{R} represents in rotating frame picture.
\quad We can use the rotating frame transformation operator U^\hat{U} to transform ψS\ket{\psi}^\mathcal{S} into ψR\ket{\psi}^\mathcal{R}. The corresponding equation as follows:

ψR=U^ψSψS=U^ψR\begin{aligned} \ket{\psi}^\mathcal{R} &= \hat{U} \ket{\psi}^\mathcal{S} \\ \ket{\psi}^\mathcal{S} &= \hat{U}^\dagger \ket{\psi}^\mathcal{R} \end{aligned}

Then, we apply the transformation to the Schrödinger equations:

iddtψR=iddt(U^ψS)=i(dU^dtψS+U^dψSdt)=idU^dtψS+U^H^SψS=idU^dtU^ψR+U^H^SU^ψR=(idU^dtU^+U^H^SU^)ψR=H^RψR\begin{aligned} i\hbar\frac{d}{dt}\ket{\psi}^\mathcal{R} &= i\hbar\frac{d}{dt} \left(\hat{U}\ket{\psi}^\mathcal{S}\right) \\&= i\hbar\left(\frac{d\hat{U}}{dt}\ket{\psi}^\mathcal{S}+\hat{U}\frac{d\ket{\psi}^\mathcal{S}}{dt}\right) \\&= i\hbar\frac{d\hat{U}}{dt}\ket{\psi}^\mathcal{S} + \hat{U}\hat{H}^\mathcal{S}\ket{\psi}^\mathcal{S} \\&= i\hbar\frac{d\hat{U}}{dt}\hat{U}^\dagger\ket{\psi}^\mathcal{R} + \hat{U}\hat{H}^\mathcal{S}\hat{U}^\dagger\ket{\psi}^\mathcal{R} \\&= \left(i\hbar\frac{d\hat{U}}{dt}\hat{U}^\dagger+\hat{U}\hat{H}^\mathcal{S}\hat{U}^\dagger\right)\ket{\psi}^\mathcal{R} \\&= \hat{H}^\mathcal{R}\ket{\psi}^\mathcal{R} \end{aligned}

So

H^R=idU^dtU^+U^H^SU^\hat{H}^\mathcal{R} = i\hbar\frac{d\hat{U}}{dt}\hat{U}^\dagger+\hat{U}\hat{H}^\mathcal{S}\hat{U}^\dagger

We have known the matrix form of U^\hat{U}:

U^=(100eiωLt)\hat{U}=\left(\begin{matrix}1 & 0 \\ 0 & e^{i\omega_Lt} \end{matrix}\right)

And we know the matrix form of H^S\hat{H}^\mathcal{S}:

H^S=H^0S+V^S=(000ωeg)+(0ΩLcos(ωLt)ΩLcos(ωLt)0)=(0ΩLcos(ωLt)ΩLcos(ωLt)ωeg)=(0ΩL2(eiωLt+eiωLt)ΩL2(eiωLt+eiωLt)ωeg)\begin{aligned} \hat{H}^\mathcal{S} &= \hat{H}_0^\mathcal{S} + \hat{V}^\mathcal{S} = \left(\begin{matrix}0 & 0 \\ \\ 0 & \hbar\omega_{eg}\end{matrix}\right) + \left(\begin{matrix}0 & \hbar\Omega_L\cos(\omega_L t) \\ \\ \hbar\Omega_L\cos(\omega_L t) & 0\end{matrix}\right) \\\\&= \left(\begin{matrix}0 & \hbar\Omega_L\cos(\omega_L t) \\ \\ \hbar\Omega_L\cos(\omega_L t) & \hbar\omega_{eg}\end{matrix}\right) = \left(\begin{matrix}0 & \frac{\hbar\Omega_L}{2}(e^{i\omega_Lt}+e^{-i\omega_Lt}) \\ \\ \frac{\hbar\Omega_L}{2}(e^{i\omega_Lt}+e^{-i\omega_Lt}) & \hbar\omega_{eg}\end{matrix}\right) \end{aligned}

Then we can calculate the matrix form of H^R\hat{H}^\mathcal{R}:

H^R=idU^dtU^+U^H^SU^=i(000iωLeiωLt)(100eiωLt)+(100eiωLt)(0ΩL2(eiωLt+eiωLt)ΩL2(eiωLt+eiωLt)ωeg)(100eiωLt)=i(000iωL)+(0ΩL2ΩL2ωeg)+(0ΩL2ei2ωLtΩL2ei2ωLt0)=(0ΩL2ΩL2Δ)+(0ΩL2ei2ωLtΩL2ei2ωLt0)\begin{aligned} \hat{H}^\mathcal{R} =& i\hbar\frac{d\hat{U}}{dt}\hat{U}^\dagger+\hat{U}\hat{H}^\mathcal{S}\hat{U}^\dagger \\\\=& i\hbar\left(\begin{matrix}0 & 0 \\ 0 & i\omega_Le^{i\omega_Lt} \end{matrix}\right)\left(\begin{matrix}1 & 0 \\ 0 & e^{-i\omega_Lt} \end{matrix}\right) \\&\qquad+ \left(\begin{matrix}1 & 0 \\ 0 & e^{i\omega_Lt} \end{matrix}\right) \left(\begin{matrix}0 & \frac{\hbar\Omega_L}{2}(e^{i\omega_Lt}+e^{-i\omega_Lt}) \\ \\ \frac{\hbar\Omega_L}{2}(e^{i\omega_Lt}+e^{-i\omega_Lt}) & \hbar\omega_{eg}\end{matrix}\right) \left(\begin{matrix}1 & 0 \\ 0 & e^{-i\omega_Lt} \end{matrix}\right) \\\\=& i\hbar\left(\begin{matrix}0 & 0 \\ 0 & i\omega_L \end{matrix}\right) + \left(\begin{matrix}0 & \frac{\hbar\Omega_L}{2} \\ \frac{\hbar\Omega_L}{2} & \hbar\omega_{eg} \end{matrix}\right) + \left(\begin{matrix}0 & \frac{\hbar\Omega_L}{2}e^{-i2\omega_Lt} \\ \frac{\hbar\Omega_L}{2}e^{i2\omega_Lt} & 0 \end{matrix}\right) \\\\=& \left(\begin{matrix}0 & \frac{\hbar\Omega_L}{2} \\ \frac{\hbar\Omega_L}{2} & -\hbar\Delta \end{matrix}\right) + \left(\begin{matrix}0 & \frac{\hbar\Omega_L}{2}e^{-i2\omega_Lt} \\ \frac{\hbar\Omega_L}{2}e^{i2\omega_Lt} & 0 \end{matrix}\right) \end{aligned}

We can use the rotating wave approximation. In this approximation, we neglect the fast-oscillating terms in the Hamiltonian written in the rotating frame. Then we can obtain the following:

H^R(0ΩL2ΩL2Δ)\hat{H}^\mathcal{R} \approx \left(\begin{matrix}0 & \frac{\hbar\Omega_L}{2} \\ \frac{\hbar\Omega_L}{2} & -\hbar\Delta \end{matrix}\right)

(By the way, in the derivation above, we assumed an equation ΩL=ΩL\Omega_L^*=\Omega_L)
\quad As you can see, the effective Hamiltonian in the rotating frame is very similar to the one described in the lectures for a two-level atom interacting with a circularly polarized light. The diagonal terms represent the detuning, and the off-diagonal terms represent the Rabi coupling.

# Exercise 6: definitions for Rb

\quad Calculate the recoil energy ERE_R. Give the result in units of Hz (ER/hE_R/h where hh is the Planck constant). Calculate the recoil velocity VRV_R and finally the Doppler temperature.

Solution:

vR=hkLmv_R = \frac{hk_L}{m}

ER=12mvR2E_R = \frac{1}{2}mv_R^2

TD=Γ2kBT_D = \frac{\hbar\Gamma}{2k_B}

# Exercise 7: Zeeman slower

\quad Consider a Cs\mathrm{Cs} atom moving at a velocity of 350m/s350\mathrm{~m/s} and being slowed in a Zeeman slower by a laser driving the 6S1/2,F=4,mF=46S3/2,F=5,mF=5\ket{6S_{1/2},F=4,m_F=4} \rightarrow \ket{6S_{3/2},F=5,m_F=5} atomic transition. For this problem, consider that the detuning as seen by the atom is constant equal to Γ/2-\Gamma/2, where Γ\Gamma is the excited state lifetime, and the saturation parameter is s=2s=2.

(a) How many cycles of absorption and emission are necessary for slowing down an atom completely?

(b) What is the duration of such a slowing?

(c) Consider that the Bias magnetic field of the Zeeman slower is 0 G. What is the magnetic field at the entrance of the Zeeman slower? Give the result in Gauss (G).

(d) What is the light field frequency detuning ωLωA\omega_L-\omega_A' at the entrance into the Zeeman slower? Note that ωA\omega_A' is the frequency of the transition including the Zeeman effect and excluding the Doppler shift.

(e) What is the stopping distance? Plot the strength of the magnetic field as a function of the slowing distance.

# Exercise 7: Dipole (trapping) force

\quad Consider a standing wave formed by the superposition of two counter-propagating plane waves along xx with identical frequency ωL\omega_L and a two-level Rb atom at rest.

(a) Give the expression of the total light intensity due to the coherent superposition of two counter-propagating plane waves.

(b) Express the total dipole and scattering forces as a function of Δ\Delta and position (2-level atom system). We will assume that the total intensity is much smaller than the saturation intensity.