# 全同粒子

\quad 自然界中存在各种各样不同种类的粒子,如电子、质子、中子、光子、π 介子等。同一类粒子具有完全相同的内禀属性,包括静止质量、电荷、自旋、磁矩、寿命等。事实上人们正是按照这些内禀属性来对粒子进行分类的。
\quad 在量子力学中,把属于同一类的粒子,或者说把具有完全相同的内禀属性的粒子,称为全同粒子。值得强调的是,粒子全同性概念与粒子态的量子化有本质的联系,如果没有态的量子化,就谈不上全同性。在经典物理学中,由于粒子的性质和状态(质量,形状,大小等)都是可以连续变化的,谈不上两个粒子真正全同。但在量子力学中,由于态的量子化,两个量子态要么完全相同,要么很不相同。

\quad 在量子力学中,我们在原则上不可能对一组同类粒子进行个别追踪从而鉴别它们。我们可以这样说,量子力学中的全同粒子完全失去了它们的 “个别性”。这就是所谓的全同粒子不可分辨性原理
\quad 我对这一原理是这样理解的:或许我们可以在某一时刻把一些电子加以定位和编号。但由于测不准原理,我们不可能一直跟踪这些电子(因为位置和动量是不能同时精准确定的),因此在下一次测量时,我们无法确认与上个时刻测量出来的处于相同位置或者有相同态的电子是否就是上一次测量出来的那个电子,还是说是其他的电子,这是我们不可分辨的。因此,在某一时刻对这些电子加以定位和编号,对以后时刻的鉴别工作毫无帮助。

\quad 设由两个全同粒子组成的体系,用一个波函数ψk1,k2(q1,q2)ψ_{k_1,k_2 } (q_1,q_2 )[1] 描述它为:q1q_1 的粒子在k1k_1 态上,q2q_2 的粒子在k2k_2 态上。若我们引入一个交换算符:

P~ψk1,k2(q1,q2)=ψk1,k2(q2,q1)(1.1.1)\tilde{P}\psi_{k_1,k_2}(q_1,q_2)=\psi_{k_1,k_2}(q_2,q_1) \tag{1.1.1}

也就是把 “第一个粒子” 和 “第二个粒子” 所扮演的角色互换一下。那么问题是,ψk1,k2(q1,q2)\psi_{k_1,k_2}(q_1,q_2)ψk1,k2(q2,q1)\psi_{k_1,k_2}(q_2,q_1) 所表示的量子态有什么不同吗?答案是:并没有什么不同!应为全同粒子的内禀属性是完全相同的,由于不可分辨性,我们根本无法(也没有必要)分辨究竟是q1q_1 的粒子在k1k_1 态上,q2q_2 的粒子在k2k_2态上,还是q1q_1 的粒子在k2k_2 态上,q2q_2 的粒子在k1k_1 态上。更直白地说,我们一开始的 “第一个粒子” 和 “第二个粒子” 的说法本身就有问题,因为我们根本没办法进行编号!
\quad 因此ψk1,k2(q1,q2)\psi_{k_1,k_2}(q_1,q_2)ψk1,k2(q2,q1)\psi_{k_1,k_2}(q_2,q_1) 所描述的就是同一个量子态!两个波函数之间仅仅是相差一个相因子:

ψk1,k2(q1,q2)=Cψk1,k2(q1,q2)(1.1.2)\psi_{k_1,k_2}(q_1,q_2)=C\psi_{k_1,k_2}(q_1,q_2) \tag{1.1.2}

那么这个相因子是多少?我们可以把交换算符连续作用两次,其实就是不变的变化,可得:

P~2ψk1,k2(q1,q2)=CP~ψk1,k2(q1,q2)=C2ψk1,k2(q1,q2)=ψk1,k2(q1,q2)(1.1.3)\begin{aligned} \tilde{P}^2\psi_{k_1,k_2}(q_1,q_2)=C\tilde{P}\psi_{k_1,k_2}(q_1,q_2)=C^2\psi_{k_1,k_2}(q_1,q_2)=\psi_{k_1,k_2}(q_1,q_2) \tag{1.1.3} \end{aligned}

由上式便可得:

C=±1(1.1.4)C=\pm 1 \tag{1.1.4}

因此交换算符的本征值有且只能有两个,1 或 - 1。对于本征值为 1 的波函数,称为对称波函数,其对应的粒子为玻色子;对于本征值为 - 1 的波函数,称为反对称波函数,其对应的粒子为费米子。
\quad 上式情况,也可以推广到 N 个粒子。

\quad 在上面,我们用ψk1,k2(q1,q2)\psi_{k_1,k_2}(q_1,q_2) 这样的表象(坐标表象)来描绘全同粒子体系,但这样显然是不好的。因为这似乎前提就给粒子编号了,而我们知道全同粒子是无法编号的。所以,我们将会在这一章的后面引入一个更为简洁的表象来研究全同粒子,也就是这一章的标题 —— 粒子数表象。
\quad 小节的最后,还应提一嘴的是:全同性是量子场论的一个推论,虽然在量子力学的框架中,它是作为原理之一出现的。碎碎念:虽然这句话我现在还不能理解,但如果以后有机会学量子场论的话,可以再回过头来体会一下这句话。2023.7.30

# 两个全同粒子组成的体系

\quad 下面我们讨论由两个全同粒子组成的体系,为了方便起见,我们忽略粒子之间的相互作用与自旋。这个体系的哈密顿算符为:

H2^=22mr1222mr22(1.2.1)\hat{H_2}=-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_1}-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_2} \tag{1.2.1}

而我们不难验证其中如下的波函数是它的一个本征波函数:

ψk1,k2(r1,r2)=(1Veik1r1)(1Veik2r2)(1.2.2)\psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2)=(\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \tag{1.2.2}

验证如下:

H^2ψk1,k2(r1,r2)=(22mr1222mr22)[(1Veik1r1)(1Veik2r2)]=(1Veik2r2)(22mr12)(1Veik1r1)+(1Veik1r1)(22mr22)(1Veik2r2)=(2k122m)(1Veik1r1)(1Veik2r2)+(2k222m)(1Veik1r1)(1Veik2r2)=(2k122m+2k222m)(1Veik1r1)(1Veik2r2)=(2k122m+2k222m)ψk1,k2(r1,r2)(1.2.3)\begin{aligned} \hat{H}_2 \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) &=(-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_1}-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_2}) \bigg[(\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2})\bigg] \\&=(\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_1}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) + (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_2}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \\&= (\frac{\hbar^2k^2_1}{2m}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) + (\frac{\hbar^2k_2^2}{2m}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \\&= (\frac{\hbar^2k^2_1}{2m}+\frac{\hbar^2k_2^2}{2m}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \\&= (\frac{\hbar^2k^2_1}{2m}+\frac{\hbar^2k_2^2}{2m}) \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) \tag{1.2.3} \end{aligned}

\quad 上面我们是按通常的运算方式来理解的,但其更加细致严格的理解应该是按照 “直积\otimes[2] 来理解。利用直积的符号,就可以将上式更具体地写为如下,哈密顿算符写为:

H^2=[(22mr12)I^2]+[I^1(22mr22)](1.2.4)\begin{aligned} \hat{H}_2 =\bigg[(-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_1}) \otimes \hat{I}_2 \bigg]+ \bigg[\hat{I}_1 \otimes (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_2}) \bigg] \tag{1.2.4} \end{aligned}

其中I^1\hat{I}_1I^2\hat{I}_2 分别是对 “第一” 与 “第二” 粒子的单位算符[3]。波函数ψk1,k2(r1,r2)\psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) 写成:

ψk1,k2(r1,r2)=(1Veik1r1)(1Veik2r2)(1.2.5)\begin{aligned} \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) =(\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \tag{1.2.5} \end{aligned}

用直积符号的话,将哈密顿算符作用再波函数上,其实就想是张量积的指标缩并:指标 1 与指标 1 作用,指标 2 与指标 2 作用(也就是坐标 1 有关的与坐标 1 作用,坐标 2 有关的与坐标 2 作用),如下:

H^2ψk1,k2(r1,r2)=([(22mr12)I^2]+[I^1(22mr22)])[(1Veik1r1)(1Veik2r2)]=[(22mr12)(1Veik1r1)][I^2(1Veik2r2)]+[I^1(1Veik1r1)][(22mr22)(1Veik2r2)]=2k122m(1Veik1r1)(1Veik2r2)+2k222m(1Veik1r1)(1Veik2r2)=(2k122m+2k222m)(1Veik1r1)(1Veik2r2)=(2k122m+2k222m)ψk1,k2(r1,r2)(1.2.6)\begin{aligned} &\qquad\hat{H}_2 \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) \\&=\Bigg( \bigg[ (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_1}) \otimes \hat{I}_2 \bigg]+ \bigg[\hat{I}_1 \otimes (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_2}) \bigg] \Bigg) \bigg[(\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \bigg] \\&=\bigg[ (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_1}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) \bigg] \otimes \bigg[ \hat{I}_2 (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \bigg] + \bigg[\hat{I}_1(\frac{1}{\sqrt{V}}e^{i\vec{k}_1 \cdot \vec{r}_1}) \bigg] \otimes \bigg[ (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_2}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \bigg] \\&=\frac{\hbar^2 k_1^2}{2m} (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) + \frac{\hbar^2 k_2^2}{2m} (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \\&=(\frac{\hbar^2 k_1^2}{2m}+\frac{\hbar^2 k_2^2}{2m}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \\&=(\frac{\hbar^2 k_1^2}{2m}+\frac{\hbar^2 k_2^2}{2m}) \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) \tag{1.2.6} \end{aligned}

这才是正确的理解方法 —— 用直积 (一种张量积) 去理解。
\quad 好,现在让我们回到两个全同粒子体系问题,除了ψk1,k2(r1,r2)\psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) 是哈密顿算符的本征值外,我们也不难发现ψk1,k2(r2,r1)\psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_2,\vec{r}_1) 也是哈密顿算符的本征值 (下式可以注意一个问题,调换直积前后两个的顺序是没影响的,主要还是看它的 “下指标”):

H^2ψk1,k2(r2,r1)=([(22mr12)I^2]+[I^1(22mr22)])[(1Veik2r1)(1Veik1r2)]=[(22mr12)(1Veik2r1)][I^2(1Veik1r2)]+[I^1(1Veik2r1)][(22mr22)(1Veik1r2)]=2k222m(1Veik2r1)(1Veik1r2)+2k122m(1Veik2r1)(1Veik1r2)=(2k122m+2k222m)(1Veik2r1)(1Veik1r2)=(2k122m+2k222m)ψk1,k2(r2,r1)(1.2.7)\begin{aligned} &\qquad\hat{H}_2 \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_2,\vec{r}_1) \\&=\Bigg( \bigg[ (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_1}) \otimes \hat{I}_2 \bigg]+ \bigg[\hat{I}_1 \otimes (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_2}) \bigg] \Bigg) \bigg[(\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_2}) \bigg] \\&=\bigg[ (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_1}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_1}) \bigg] \otimes \bigg[ \hat{I}_2 (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_2}) \bigg] + \bigg[\hat{I}_1(\frac{1}{\sqrt{V}}e^{i\vec{k}_2 \cdot \vec{r}_1}) \bigg] \otimes \bigg[ (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_2}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_2}) \bigg] \\&=\frac{\hbar^2 k_2^2}{2m} (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_2}) + \frac{\hbar^2 k_1^2}{2m} (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_2}) \\&=(\frac{\hbar^2 k_1^2}{2m}+\frac{\hbar^2 k_2^2}{2m}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_2}) \\&=(\frac{\hbar^2 k_1^2}{2m}+\frac{\hbar^2 k_2^2}{2m}) \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_2,\vec{r}_1) \tag{1.2.7} \end{aligned}

由此我们知道ψk1,k2(r1,r2)\psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2)ψk1,k2(r2,r1)\psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_2,\vec{r}_1) 是能量本征值相等的两个(非相关)的本质函数。这说明全同多粒子体系的能量是简并的!但无论是ψk1,k2(r1,r2)\psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) 还是ψk1,k2(r2,r1)\psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_2,\vec{r}_1) 都不满足玻色子或费米子的统计规律(调换次序要么对称要么反对称)。但也没关系,它俩不满足,只有将它们的线性组合满足这个关系就好了:
\quad 对于玻色子:

ψk1,k2S(r1,r2)=12[ψk1,k2(r1,r2)+ψk1,k2(r2,r1)](1.2.8)\psi^S_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2)=\frac{1}{\sqrt{2}}[\psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2)+\psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_2,\vec{r}_1)] \tag{1.2.8}

\quad 对于费米子:

ψk1,k2A(r1,r2)=12[ψk1,k2(r1,r2)ψk1,k2(r2,r1)](1.2.9)\psi^A_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2)=\frac{1}{\sqrt{2}}[\psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2)-\psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_2,\vec{r}_1)] \tag{1.2.9}

上两式中的12\frac{1}{\sqrt{2}} 是归一化因子。

# 三个全同玻色子组成的体系

\quad 在这一小节,我们将讨论一下三个全同玻色子组成的体系。讨论这一小节的目的是为了给下一小节推广到 N 个全同粒子体系做铺垫。如果再后面的 N 个全同粒子体系中有内容看不懂的话,可以回过头来看看作为特例的这一小节。

\quad 假设有三个全同玻色子,而且体系中有且只存在两个态k1k_1k2k_2。假若有两个粒子是k1k_1 态,另一个粒子是k2k_2 态,把粒子交换遍历一遍,可以有3!=63!=6 种波函数:

φk1(q1)φk1(q2)φk2(q3);φk1(q1)φk1(q3)φk2(q2)φk1(q2)φk1(q1)φk2(q3);φk1(q2)φk1(q3)φk2(q1)φk1(q3)φk1(q1)φk2(q2);φk1(q3)φk1(q2)φk2(q1)\begin{aligned} &\varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_3) \quad;\quad \varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_3)\otimes\varphi_{k_2}(q_2) \\ &\varphi_{k_1}(q_2)\otimes\varphi_{k_1}\ (q_1)\otimes\varphi_{k_2}(q_3) \quad;\quad \varphi_{k_1}(q_2)\otimes\varphi_{k_1}\ (q_3)\otimes\varphi_{k_2}(q_1) \\ &\varphi_{k_1}(q_3)\otimes\varphi_{k_1}\ (q_1)\otimes\varphi_{k_2}(q_2) \quad;\quad \varphi_{k_1}(q_3)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_1) \end{aligned}

但由于上面六种都有不符合玻色子的统计规律,因此要把这六个波函数线性组合,使其得到新的波函数满足交换粒子的对称性:

φ2k1,k2(q1,q2,q3)=D1[φk1(q1)φk1(q2)φk2(q3)+φk1(q1)φk1(q3)φk2(q2)+φk1(q2)φk1(q1)φk2(q3)+φk1(q2)φk1(q3)φk2(q1)+φk1(q3)φk1(q1)φk2(q2)+φk1(q3)φk1(q2)φk2(q1)]=D~1[φk1(q1)φk1(q2)φk2(q3)+φk1(q1)φk1(q3)φk2(q2)+φk1(q2)φk1(q1)φk2(q3)](1.3.1)\begin{aligned} \varphi_{2k_1,k_2}(q_1,q_2,q_3)&=D_1\big[ \varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_3)+ \varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_3)\otimes\varphi_{k_2}(q_2)+ \\&\qquad\quad\varphi_{k_1}(q_2)\otimes\varphi_{k_1}\ (q_1)\otimes\varphi_{k_2}(q_3)+ \varphi_{k_1}(q_2)\otimes\varphi_{k_1}\ (q_3)\otimes\varphi_{k_2}(q_1)+ \\&\qquad\quad\varphi_{k_1}(q_3)\otimes\varphi_{k_1}\ (q_1)\otimes\varphi_{k_2}(q_2)+ \varphi_{k_1}(q_3)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_1)\big] \\&=\tilde{D}_1\big[\varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_3)+ \varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_3)\otimes\varphi_{k_2}(q_2)+ \\&\qquad\quad\varphi_{k_1}(q_2)\otimes\varphi_{k_1}\ (q_1)\otimes\varphi_{k_2}(q_3)\big] \tag{1.3.1} \end{aligned}

其中D1D_1D~1\tilde{D}_1 分别为全部展开式和合并同类项后的展开式的归一化常数。值得注意的是:似乎合并同类项后,每一项的权重是一样的。虽然我也不知道怎么证明,,Ծ‸Ծ,,,,Ծ‸Ծ,,
\quad 同理,假若是有两个粒子是k2k_2 态,另一个粒子是k1k_1 态,我们有:

φk1,2k2(q1,q2,q3)=D~2[φk1(q1)φk2(q2)φk2(q3)+φk1(q1)φk2(q3)φk2(q2)+φk1(q2)φk2(q1)φk2(q3)](1.3.2)\begin{aligned} \varphi_{k_1,2k_2}(q_1,q_2,q_3)=\tilde{D}_2\big[& \varphi_{k_1}(q_1)\otimes\varphi_{k_2}\ (q_2)\otimes\varphi_{k_2}(q_3)+ \varphi_{k_1}(q_1)\otimes\varphi_{k_2}\ (q_3)\otimes\varphi_{k_2}(q_2)+ \\& \varphi_{k_1}(q_2)\otimes\varphi_{k_2}\ (q_1)\otimes\varphi_{k_2}(q_3)\big] \tag{1.3.2} \end{aligned}

\quad 下面,我们要做三件事:一是验证φ2k1,k2(q1,q2,q3)\varphi_{2k_1,k_2}(q_1,q_2,q_3)φk1,2k2(q1,q2,q3)\varphi_{k_1,2k_2}(q_1,q_2,q_3) 这两个函数任意对换其中一对坐标,函数值是不改变的;二是,由于(2k1,k2)(k1,2k2)(2k_1,k_2)\ne(k_1,2k_2), 因此我们可以证明φ2k1,k2(q1,q2,q3)\varphi_{2k_1,k_2}(q_1,q_2,q_3)φk1,2k2(q1,q2,q3)\varphi_{k_1,2k_2}(q_1,q_2,q_3) 是正交的;三是找到它们的归一化因子D~1\tilde{D}_1D~2\tilde{D}_2
\quad 首先,不难验证φ2k1,k2(q1,q2,q3)\varphi_{2k_1,k_2}(q_1,q_2,q_3)φk1,2k2(q1,q2,q3)\varphi_{k_1,2k_2}(q_1,q_2,q_3) 任意对换其中一对坐标,函数值是不改变的。不信你自己可以随便试试 |・'-'・) ✧
\quad 其次,关于这两个函数正交,我们有:

dq1dq2dq3φk1,2k2φ2k1,k2=dq1dq2dq3D~1D~2[φk1(q1)φk2(q2)φk2(q3)+φk1(q1)φk2(q3)φk2(q2)+φk1(q2)φk2(q1)φk2(q3)][φk1(q1)φk1(q2)φk2(q3)+φk1(q1)φk1(q3)φk2(q2)+φk1(q2)φk1(q1)φk2(q3)](1.3.3)\begin{aligned} \int dq_1dq_2dq_3 \varphi_{k_1,2k_2}^* \varphi_{2k_1,k_2} =\int dq_1dq_2dq_3 \tilde{D}_1\tilde{D}_2^* \big[& \varphi_{k_1}(q_1)\otimes\varphi_{k_2}\ (q_2)\otimes\varphi_{k_2}(q_3)+ \varphi_{k_1}(q_1)\otimes\varphi_{k_2}\ (q_3)\otimes\varphi_{k_2}(q_2)+ \\& \varphi_{k_1}(q_2)\otimes\varphi_{k_2}\ (q_1)\otimes\varphi_{k_2}(q_3)\big]^* \big[\varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_3)+ \\& \varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_3)\otimes\varphi_{k_2}(q_2)+ \varphi_{k_1}(q_2)\otimes\varphi_{k_1}\ (q_1)\otimes\varphi_{k_2}(q_3)\big] \tag{1.3.3} \end{aligned}

上式乘开后,一共有九项。我们取其中一项来看:

dq1dq2dq3[φk1(q1)φk2(q2)φk2(q3)][φk1(q1)φk1(q2)φk2(q3)]=φk1(q1)φk1(q1)φk2(q2)φk1(q2)φk2(q3)φk2(q3)=101=1×0×1=0(1.3.4)\begin{aligned} &\quad\int dq_1dq_2dq_3 \big[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}\ (q_2)\otimes\varphi_{k_2}(q_3)\big]^* \big[\varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_3)\big] \\&= \braket{\varphi_{k_1}(q_1)|\varphi_{k_1}(q_1)} \otimes \braket{\varphi_{k_2}(q_2)|\varphi_{k_1}(q_2)} \otimes \braket{\varphi_{k_2}(q_3)|\varphi_{k_2}(q_3)} \\&= 1 \otimes0 \otimes 1=1\times0\times1=0 \tag{1.3.4} \end{aligned}

在上式的最后一步中,我们应该注意到标量的直积,或者说标量的张量积其实就是普通乘积。其余的 8 项,也可以这样计算,结果都为零,因此 (1.3.3) 式的最终结果为零,它两正交。
\quad 最后,我们来计算归一化常数D~1\tilde{D}_1D~2\tilde{D}_2, 由归一化条件得:

1=dq1dq2dq3φ2k1,k2φ2k1,k2=dq1dq2dq3D~1D~1[φk1(q1)φk1(q2)φk2(q3)+φk1(q1)φk1(q3)φk2(q2)+φk1(q2)φk1(q1)φk2(q3)][φk1(q1)φk1(q2)φk2(q3)+φk1(q1)φk1(q3)φk2(q2)+φk1(q2)φk1(q1)φk2(q3)](1.3.5)\begin{aligned} 1 = \int dq_1dq_2dq_3 \varphi_{2k_1,k_2}^* \varphi_{2k_1,k_2} \\ =\int dq_1dq_2dq_3 \tilde{D}_1^*\tilde{D}_1 \big[& \varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_3)+ \varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_3)\otimes\varphi_{k_2}(q_2)+ \\& \varphi_{k_1}(q_2)\otimes\varphi_{k_1}\ (q_1)\otimes\varphi_{k_2}(q_3)\big]^* \big[\varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_3)+ \\& \varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_3)\otimes\varphi_{k_2}(q_2)+ \varphi_{k_1}(q_2)\otimes\varphi_{k_1}\ (q_1)\otimes\varphi_{k_2}(q_3)\big] \tag{1.3.5} \end{aligned}

如果你计算了上式中的九项,就会发现每一项仅与自身内积为 1,而与其他项的内积为零,即使推广到了 N 个粒子,这也是一个普遍的规律。事实上,我们在下面推广到 N 全同粒子体系时,也会利用到这一点来计算它们的归一个常数。因此,上式为:

1=dq1dq2dq3φ2k1,k2φ2k1,k2=3D~12(1.3.6)\begin{aligned} 1=\int dq_1dq_2dq_3 \varphi_{2k_1,k_2}^* \varphi_{2k_1,k_2}=3|\tilde{D}_1|^2 \tag{1.3.6} \end{aligned}

由此我们得到D~1=13\tilde{D}_1=\frac{1}{\sqrt{3}}。同理D~2=13\tilde{D}_2=\frac{1}{\sqrt{3}}

# N 个全同粒子体系

# 几个知识点

\quad 在这一节展开讨论 N 个全同粒子体系之前,有几个关于排列组合,以及群论的知识需要了解。

  • 知识点①:假若有 N 个小球(有编号的)要放入 M 个碗里,并要求第一个碗有n1n_1 个小球,第二个碗有n2n_2 个 \cdots\cdots 有些碗的小球个数nsn_s 可以为零,但要保证n1+n2++nM=Nn_1+n_2+\cdots+n_M=N。那么一共有D~\tilde{D} 种放法:

D~=N!n1!n2!nM!(1.4.1)\tilde{D}=\frac{N!}{n_1!n_2!\cdots n_M!} \tag{1.4.1}

这不难理解:首先将 N 个球排列就有了 N! 种,但同一个碗里的排列要消除掉,所以会除以n1!n2!nM!n_1!n_2!\cdots n_M!。这是一个很简单的高中知识。

  • 知识点②:将元素(1,2,3,,N)(1,2,3,\cdots,N) 的任意一个重新排列称为一个置换,用一个2×N2\times N 的矩阵来描述:

P^=(12NP(1)P(2)P(N))(1.4.2)\hat{P}= \left( \begin{matrix} 1 & 2 & \cdots & N \\ P(1) & P(2) & \cdots & P(N) \end{matrix} \right) \tag{1.4.2}

例如,在置换

P^=(123N4123)(1.4.3)\hat{P}= \left( \begin{matrix} 1 & 2 & 3& N \\ 4 & 1 & 2 & 3 \end{matrix} \right) \tag{1.4.3}

种,P(1)=4,P(2)=1,P(3)=2,P(4)=3P(1)=4 , P(2)=1 , P(3)=2 , P(4)=3。显然全部置换的总数等于 N!。

  • 知识点③:两个置换的乘积定义为

P^1P^2=(12NP1(1)P1(2)P1(N))(12NP2(1)P2(2)P2(N))=(12NP3(1)P3(2)P3(N))(1.4.4)\begin{aligned} \hat{P}_1\hat{P}_2&= \left( \begin{matrix} 1 & 2 & \cdots & N \\ P_1(1) & P_1(2) & \cdots & P_1(N) \end{matrix} \right) \left( \begin{matrix} 1 & 2 & \cdots & N \\ P_2(1) & P_2(2) & \cdots & P_2(N) \end{matrix} \right) \\&= \left( \begin{matrix} 1 & 2 & \cdots & N \\ P_3(1) & P_3(2) & \cdots & P_3(N) \end{matrix} \right) \end{aligned} \tag{1.4.4}

例如:

(1234545213)(1234531524)=(1234524351)(1.4.5)\begin{aligned} \left( \begin{matrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{matrix} \right) \left( \begin{matrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{matrix} \right) =\left( \begin{matrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{matrix} \right) \tag{1.4.5} \end{aligned}

上式可以这样理解,坐标这个置换算符的作用是先将 “1” 换到 “3”,再将 “3” 换到 “2”,也就等效于右边算符把 “1” 直接换到 “2”。其他也以此类推。

  • 知识点④:若一个置换仅仅只是交换两个元素,那么就称为是对换,记作:

(i,j)=(12ijN12jiN)(1.4.6)(i,j)= \left( \begin{matrix} 1 & 2 & \cdots & i & j \cdots & N \\ 1 & 2 & \cdots & j & i \cdots & N \end{matrix} \right) \tag{1.4.6}

可以说对换是一种特殊的置换。

  • 知识点⑤:我们可以证明 (但这里就不打算给证明了๐・ᴗ・๐), 任何一个置换都可以写成多个对换的乘积,例如:

(12343241)=(3,4)(2,3)(3,4)(1,2)(3,4)(2.3)(3,4)(2,3)(1,2)(2,3)=(12344213)(12344213)(1.4.7)\begin{aligned} \left( \begin{matrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{matrix} \right) &=(3,4)(2,3)(3,4)(1,2)(3,4)(2.3)(3,4)(2,3)(1,2)(2,3) \\&= \left( \begin{matrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{matrix} \right) \left( \begin{matrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{matrix} \right) \end{aligned} \tag{1.4.7}

由上式可以看到,一般而言,分解不是唯一的。但是,任意一个置换的分解出来的对换个数的奇偶性是唯一的,确定的!

  • 知识点⑥:若置换分解出来的对换个数是奇数,我们则称这个置换为奇置换;若置换分解出来的对换个数是偶数,我们则称这个置换为偶置换。且我们对于一个置换P^\hat{P} 可定义一个值δ(P^)\delta(\hat{P}),称作它的置换宇称:

δ(P^)={+1,P^为偶置换时1P^为奇置换时(1.4.8)\delta(\hat{P})= \begin{cases} +1, &\text{当} \hat{P} \text{为偶置换时} \\ -1,&\text{当} \hat{P} \text{为奇置换时} \end{cases} \tag{1.4.8}

在下面我们会用到这样的式子,即一个对换为P^ij=(i.j)\hat{P}_{ij}=(i.j),则有:

δ(P^P^ij)={1,P^为偶置换时+1P^为奇置换时=δ(P^)(1.4.9)\delta(\hat{P}\hat{P}_{ij})= \begin{cases} -1, &\text{当} \hat{P} \text{为偶置换时} \\ +1,&\text{当} \hat{P} \text{为奇置换时} \end{cases} =-\delta(\hat{P}) \tag{1.4.9}

这是可以理解的,因为当一个置换乘上一个对换,得到新的一个置换,这个新置换分解出来的对换个数就刚好比原置换多一个,因此新置换和原置换的奇偶性刚好相反。

  • 知识点⑦:由知识点②可知,N 个元素一个有 N! 种置换,这 N! 种置换构成了一个置换群{P^}\{\hat{P}\}。有这样的一个置换群定理:当用一个固定的置换取乘这 N! 个置换时,乘积的结果刚好取遍了这个置换群里的所有元素。换句话说就是:

{(i,j)P^}={P^}={P^}(1.4.10)\{(i,j)\hat{P}\}=\{\hat{P'}\}=\{\hat{P}\} \tag{1.4.10}

# N 个全同玻色子体系

\quad 对于由 N 个玻色子组成的体系,它的波函数的一般表达式我们也希望是所有 “组合” 的线性叠加:

ψk1,k2,,kNS(q1,q2,,qN)=DP^P^[φk1(q1)φk2(q2)φkN(qN)]=D~{P^}P^[φk1(q1)φk2(q2)φkN(qN)](1.4.11)\begin{aligned} \psi^S_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) &=D \sum_{\hat{P}}\hat{P}[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \\ &= \tilde{D}\sum_{\{\hat{P}\}}\hat{P}[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \end{aligned} \tag{1.4.11}

上式种的记号 P^\sum_{\hat{P}}{P^}\sum_{\{\hat{P}\}} 分别代表对于全部置换和给出不同项的置换求和。相应的 DDD~\tilde{D} 分别为全部展开式和合并同类项后的展开式的归一化常数。

\quad 下面我们想要证明 (1.4.11) 式的波函数,是符号 N 个玻色子的全同粒子不可分辨性的(即交换任意两个粒子波函数对称)。并且我们要找出它的归一化常数D~\tilde{D}
\quad 根据上一小节的知识点⑦,我们将 (1.4.11) 式左乘任意一个对换算符 (i,j)

(i,j)ψk1,k2,,kNS(q1,q2,,qN)=DP^[(i,j)P^][φk1(q1)φk2(q2)φkN(qN)]=DP^P^[φk1(q1)φk2(q2)φkN(qN)]=ψk1,k2,,kNS(q1,q2,,qN)(1.4.12)\begin{aligned} (i,j)\psi^S_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) &=D \sum_{\hat{P}}[(i,j)\hat{P}][\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \\&=D\sum_{\hat{P'}}\hat{P'}[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \\&=\psi^S_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) \tag{1.4.12} \end{aligned}

上式也就证明了这样的波函数的确满足了全同玻色子的统计要求。
\quad 下面我们再来计算归一化常数D~\tilde{D}。按照归一化条件,我们有:

1=dq1dq2dqNψk1,k2,,kN(q1,q2,,qN)ψk1,k2,,kN(q1,q2,,qN)=D~2{P1^}{P2^}dq1dq2dqNP^1[φk1(q1)φk2(q2)φkN(qN)]×P^2[φk1(q1)φk2(q2)φkN(qN)](1.4.13)\begin{aligned} 1 &= \int dq_1dq_2\dots dq_N\ \psi^*_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N)\psi_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) \\&= |\tilde{D}|^2 \sum_{\{\hat{P_1}\}} \sum_{\{\hat{P_2}\}} \int dq_1dq_2\dots dq_N\ \hat{P}_1 \left[ \varphi^*_{k_1}(q_1)\otimes\varphi^*_{k_2}(q_2)\otimes\cdots\otimes\varphi^*_{k_N}(q_N) \right] \\& \qquad \times \hat{P}_2 \left[ \varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N) \right] \end{aligned} \tag{1.4.13}

由上一节我们知道展开式中的每一项φk1(qP1)φk2(qP2)φkN(qPN)\varphi_{k_1}(q_{P_1})\otimes\varphi_{k_2}(q_{P_2})\otimes\cdots\otimes\varphi_{k_N}(q_{P_N}) 仅与自身的内积不为零。因此上式可化为:

1=D~2{P^}dq1dq2dqNP^[φk1(q1)φk2(q2)φkN(qN)]×P^[φk1(q1)φk2(q2)φkN(qN)]=D~2{P^}1(1.4.14)\begin{aligned} 1 &= |\tilde{D}|^2 \sum_{\{\hat{P}\}} \int dq_1dq_2\dots dq_N\ \hat{P} \left[ \varphi^*_{k_1}(q_1)\otimes\varphi^*_{k_2}(q_2)\otimes\cdots\otimes\varphi^*_{k_N}(q_N) \right] \\& \qquad \times \hat{P} \left[ \varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N) \right] \\&= |\tilde{D}|^2 \sum_{\{\hat{P}\}}1 \tag{1.4.14} \end{aligned}

上式的问题是究竟有多少种不同类的置换{P~}\{ \tilde{P} \}。虽然上面我们写了有k1,k2,,kNk_1,k_2,\cdots,k_N 的态,但其实我们的意思是这些态是可以重复的(因为玻色子没有泡利不相容原理)。假设有 M 种态,其对应态的粒子数为nk1,nk2,,nkMn_{k_1},n_{k_2},\cdots,n_{k_M},且nk1+nk2++nkM=Nn_{k_1}+n_{k_2}+\cdots+n_{k_M}=N。那么我们的问题究竟有多少种不同类的置换{P~}\{ \tilde{P} \},其实就是上一节中知识点①的内容,因此:

{P^}1=N!nk1!nk2!nkM!(1.4.15)\sum_{\{\hat{P}\}}1=\frac{N!}{n_{k_1}!n_{k_2}!\cdots n_{k_M}!} \tag{1.4.15}

结合 (1.4.14) 和 (1.4.15) 式,可得归一化常数为:

D~=nk1!nk2!nkM!N!(1.4.16)\tilde{D} = \sqrt{\frac{n_{k_1}!n_{k_2}!\cdots n_{k_M}!}{N!}} \tag{1.4.16}

这样,一组 N 个全同玻色子的完备正交归一函数可取为:

ψk1,k2,,kNS(q1,q2,,qN)=nk1!nk2!nkM!N!{P^}P^[φk1(q1)φk2(q2)φkN(qN)](1.4.17)\psi^S_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) = \sqrt{\frac{n_{k_1}!n_{k_2}!\cdots n_{k_M}!}{N!}} \sum_{\{\hat{P}\}}\hat{P}[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \tag{1.4.17}

# N 个全同费米子体系

\quad 下面,我们来研究一下费米子波函数。对于由 N 个费米子组成的体系,它的波函数的一般表达式我们也希望是所有 “组合” 的线性叠加,但不同于玻色子,费米子的波函数是反对称的,因此我们可以将它的波函数写成一下形式:

ψk1,k2,,kNA(q1,q2,,qN)=DP^δ(P^)P^[φk1(q1)φk2(q2)φkN(qN)](1.4.18)\psi^A_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) = D \sum_{\hat{P}} \delta(\hat{P}) \ \hat{P}[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \tag{1.4.18}

其中δ(P^)\delta(\hat{P}) 就是式 (1.4.8) 所定义的。顺便说一下,因为费米子要满足泡利不相容原理,因此上式不需要像玻色子那样多写一步合并同类项,因为每一个态上只能有一个全同粒子,所以根本没有同类项。我们可以验证,写成上式形式,费米子波函数是满足反对称性的:

(i,j)ψk1,k2,,kNA(q1,q2,,qN)=DP^δ(P^)(i,j)P^[φk1(q1)φk2(q2)φkN(qN)]=D(i,j)P^δ((i,j)P^)[(i,j)P^][φk1(q1)φk2(q2)φkN(qN)]=DP^(1)δ(P^)P^[φk1(q1)φk2(q2)φkN(qN)]=ψk1,k2,,kNA(q1,q2,,qN)(1.4.19)\begin{aligned} (i,j) \psi^A_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) & = D \sum_{\hat{P}} \delta(\hat{P})(i,j) \hat{P}[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \\& = D \sum_{(i,j)\hat{P}} \delta\left((i,j)\hat{P}\right)[(i,j)\hat{P}][\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \\& = D \sum_{\hat{P}} (-1)\delta(\hat{P})\ \hat{P}[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \\& = -\psi^A_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) \tag{1.4.19} \end{aligned}

这样我们验证了它的反对称性。(注意,上式的推导用到了这一节的第一小节的知识点⑥和知识点⑦)
\quad 下面我们再来讨论它的归一化因子 D。其实和玻色子的一样,因为展开式中每一项仅与其自身的内积非零且等于 1,而且由于泡利不相容原理,每个态上只能有一个粒子,因此归一化因子 D 为:

D=nk1!nk2!nkN!N!=1N!(1.4.20)D = \sqrt{\frac{n_{k_1}!n_{k_2}!\cdots n_{k_N}!}{N!}}=\frac{1}{\sqrt{N!}} \tag{1.4.20}

\quad 所以一组 N 个全同费米子的完备正交归一函数可取为:

ψk1,k2,,kNA(q1,q2,,qN)=1N!P^δ(P^)P^[φk1(q1)φk2(q2)φkN(qN)](1.4.21)\psi^A_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) = \frac{1}{\sqrt{N!}} \sum_{\hat{P}} \delta(\hat{P}) \ \hat{P}[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \tag{1.4.21}

\quad 最后,我们可以再来看一下,用上式表达的全同费米子体系的波函数是与泡利不相容原理自洽的。若有任意一对ki=kjk_i=k_j,则:

(i,j)ψk1,,ki,,kj,,kN(q1,,qi,,qj,,qN)=1N!P^δ((i,j)P^)P^[φk1(q1)φk1(qi)φk1(qj)φk1(qN)]=1N!P^δ(P^)P^[φk1(q1)φk1(qi)φk1(qj)φk1(qN)]=ψk1,,ki,,kj,,kN(q1,,qi,,qj,,qN)(1.4.22)\begin{aligned} & (i,j) \psi_{k_1,\dots,k_i,\dots,k_j,\dots,k_N} (q_1,\dots,q_i,\dots,q_j,\dots,q_N) \\=& \frac{1}{\sqrt{N!}} \sum_{\hat{P}} \delta\left((i,j)\hat{P}\right) \ \hat{P}\left[\varphi_{k_1}(q_1)\otimes\dots\varphi_{k_1}(q_i)\otimes\dots\otimes\varphi_{k_1}(q_j)\otimes\dots\otimes\varphi_{k_1}(q_N)\right] \\=& -\frac{1}{\sqrt{N!}} \sum_{\hat{P}} \delta(\hat{P}) \ \hat{P}\left[\varphi_{k_1}(q_1)\otimes\dots\varphi_{k_1}(q_i)\otimes\dots\otimes\varphi_{k_1}(q_j)\otimes\dots\otimes\varphi_{k_1}(q_N)\right] \\=& -\psi_{k_1,\dots,k_i,\dots,k_j,\dots,k_N} (q_1,\dots,q_i,\dots,q_j,\dots,q_N) \end{aligned} \tag{1.4.22}

且:

(i,j)ψk1,,ki,,kj,,kN(q1,,qi,,qj,,qN)=ψk1,,ki,,kj,,kN(q1,,qj,,qi,,qN)(1.4.23)\begin{aligned} & (i,j) \psi_{k_1,\dots,k_i,\dots,k_j,\dots,k_N} (q_1,\dots,q_i,\dots,q_j,\dots,q_N)=\psi_{k_1,\dots,k_i,\dots,k_j,\dots,k_N} (q_1,\dots,q_j,\dots,q_i,\dots,q_N) \tag{1.4.23} \end{aligned}

又因为ki=kjk_i=k_j,因此结合上两式得:

ψk1,,ki,,kj,,kN(q1,,qj,,qi,,qN)=ψk1,,ki,,kj,,kN(q1,,qi,,qj,,qN)ψk1,,ki,,kj,,kN(q1,,qi,,qi,,qN)0(1.4.24)\begin{aligned} &\psi_{k_1,\dots,k_i,\dots,k_j,\dots,k_N} (q_1,\dots,q_j,\dots,q_i,\dots,q_N)=-\psi_{k_1,\dots,k_i,\dots,k_j,\dots,k_N} (q_1,\dots,q_i,\dots,q_j,\dots,q_N) \\ \Longrightarrow & \psi_{k_1,\dots,k_i,\dots,k_j,\dots,k_N} (q_1,\dots,q_i,\dots,q_i,\dots,q_N)\equiv0 \tag{1.4.24} \end{aligned}

上式就说明了泡利不相容原理,不可能两个 (或以上的) 费米子存在同一个态中。

# Slater 行列式

\quad 如果 (1.4.21) 式这样写法的全同费米子体系波函数觉得太麻烦了。有一种较为简便的写法。利用行列式的定义,我们可以将满足费米 - 狄拉克统计的多体波函数写作:

ψk1,k2,,kNA(q1,q2,,qN)=1N!φk1(q1)φk2(q1)φkN(q1)φk1(q2)φk2(q2)φkN(q2)φk1(qN)φk2(qN)φkN(qN)(1.4.25)\psi^A_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) = \frac{1}{\sqrt{N!}} \left| \begin{matrix} \varphi_{k_1}(q_1) & \varphi_{k_2}(q_1) & \cdots & \varphi_{k_N}(q_1) \\ \varphi_{k_1}(q_2) & \varphi_{k_2}(q_2) & \cdots & \varphi_{k_N}(q_2) \\ \vdots & \vdots & \vdots & \vdots \\ \varphi_{k_1}(q_N) & \varphi_{k_2}(q_N) & \cdots & \varphi_{k_N}(q_N) \end{matrix} \right| \tag{1.4.25}

它被称为 Slater 行列式。只不过这里若是想把行列式化成多项式,应该用直积,而不是普通行列式的乘积。
\quad 用 Slater 行列式,我们会发现许多全同费米子体系的性质与行列式的性质是能够对应上去的。例如,若我们把 Slater 行列式任意两行对换,对于行列式而言,对换任意俩行 (或两列) 会多出一个负号。而对全同费米子体系而言,对换任意两行相当于作用一个对换算符,多出一个负号刚好满足其波函数的反对称性;再例如,若有两个态是相同的,即ki=kjk_i=k_j,则 Slater 行列式有俩列是完全相等的,对于行列式而言,若有俩列 (或两行) 是相等的,则行列式等于零。而对于全同费米子体系而言,有两列完全相等相当于有两个粒子处于同一个态中,由于泡利不相容原理,波函数当然要等于零。

# 粒子数表象的引入

\quad 采用坐标表象来描述全同粒子系的量子态是相当繁杂的,利用它来进行各种计算很不方便,所以它不是一种令人满意的表象。其根源在于:对于全同粒子进行编号是没有意义的,完全是多余的,但在波函数的上述表示方式中,又不得不先对粒子进行编号,以写出 q 表象中的某一项波函数,然后再把对粒子进行各种置换所构成的各项波函数叠加起来,以满足置换对称性
\quad 然而事实上,我们只需要把处于每个单粒子态上的粒子数(nk1,nk2,,nkN)(n_{k_1},n_{k_2},\cdots,n_{k_N}) 交代清楚,全同粒子系的量子态就完全确定了,并不需要(也没有意义)去指出某个单粒子态上的粒子是 “哪一个” 粒子。这种利用(nk1,nk2,,nkN)(n_{k_1},n_{k_2},\cdots,n_{k_N}) 来标记波函数,从而避免对全同粒子进行编号,脱离 q 表象的表示方法,就被称为粒子填布数表象,简称粒子数表象,也称 Fock 表象。对于玻色子体系和费米子体系,都可以引入这样的粒子数表象记号:

nk1,nk2,,nkN(1.5.1)\begin{aligned} \ket{n_{k_1},n_{k_2},\cdots,n_{k_N}} \end{aligned} \tag{1.5.1}

其中nkin_{k_i} 表示单粒子态φki\varphi_{k_i}ψk1,,kN\psi_{k_1,\cdots,k_N} 中出现的次数。并要求:

nk1+nk2++nkN=N(1.5.2)n_{k_1}+n_{k_2}+\cdots+n_{k_N}=N \tag{1.5.2}

\quad 显然,(1.5.1) 的这种粒子数表象的写法与我们之前坐标表象写玻色子和费米子体系的波函数是可以一一对应的。
\quad 例如,对于三个玻色子体系的波函数ψ2k1,k2(q1,q2,q3)\psi_{2k_1,k_2}(q_1,q_2,q_3) 可以写作nk1=2,nk2=1\ket{n_{k_1}=2,n_{k_2}=1},或者nk2=1,nk1=2\ket{n_{k_2}=1,n_{k_1}=2}。而将ψk1,2k2(q1,q2,q3)\psi_{k_1,2k_2}(q_1,q_2,q_3) 可以写作nk1=1,nk2=2\ket{n_{k_1}=1,n_{k_2}=2},或者nk2=2,nk1=1\ket{n_{k_2}=2,n_{k_1}=1}
\quad 而对于费米子体系,我们则要注意一个有趣的问题。记号nk1,nk2\ket{n_{k_1},n_{k_2}}nk2,nk1\ket{n_{k_2},n_{k_1}} 是否相等。对于玻色子,答案是肯定的。而对于费米子,我们则要稍微谨慎一点。按照定义,我们有:

nk1=1,nk2=1ψk1,k2(q1,q2)=12!φk1(q1)φk2(q1)φk1(q2)φk2(q2)(1.5.3)\begin{aligned} \ket{n_{k_1}=1,n_{k_2}=1} \longleftrightarrow \psi_{k_1,k_2}(q_1,q_2)=\frac{1}{\sqrt{2!}} \left| \begin{matrix} \varphi_{k_1}(q_1) & \varphi_{k_2}(q_1) \\ \varphi_{k_1}(q_2) & \varphi_{k_2}(q_2) \end{matrix} \right| \tag{1.5.3} \end{aligned}

nk2=1,nk1=1ψk2,k1(q1,q2)=12!φk2(q1)φk1(q1)φk2(q2)φk1(q2)(1.5.4)\begin{aligned} \ket{n_{k_2}=1,n_{k_1}=1} \longleftrightarrow \psi_{k_2,k_1}(q_1,q_2)=\frac{1}{\sqrt{2!}} \left| \begin{matrix} \varphi_{k_2}(q_1) & \varphi_{k_1}(q_1) \\ \varphi_{k_2}(q_2) & \varphi_{k_1}(q_2) \end{matrix} \right| \tag{1.5.4} \end{aligned}

根据行列式的定义,我们有:

nk1=1,nk2=1=nk2=1,nk1=1(1.5.5)\ket{n_{k_1}=1,n_{k_2}=1}=-\ket{n_{k_2}=1,n_{k_1}=1} \tag{1.5.5}

因此,它们并不相等。

# 产生算符和湮灭算符

# 产生和湮灭算符的引入

\quad 为了在粒子数表象中进行各种计算,引入粒子产生和湮灭算符是很方便的。利用它们,就可以把粒子数表象的基矢以及各种类型的力学量方便地表示出来,而且在各种计算中,只需借助这些产生算符和湮灭算符的基本对易关系,量子态的置换对称性即可以自动得以保证
\quad 首先,我们引入一个态0\ket{0},称为真空态。这一个态代表的是没有粒子,它在坐标表象中是没有对应的。它的作用就想自然数中引入 0 一样,它的引入使得一切都能够自洽。我们要求它自身归一化,即:

00=1(1.6.1)\braket{0|0}=1 \tag{1.6.1}

在此基础上,我们可以定义产生算符a^k\hat{a}^\dagger_k。我们要求,当它作用在真空态上时,产生一个量子态为 k 的单粒子态Φk\varPhi_k。即我们有:

a^k0=nk=1(1.6.2)\hat{a}^\dagger_k \ket{0} = \ket{n_k=1} \tag{1.6.2}

同时,我们还要求粒子数为一的态归一化:

nk=1nk=1(1.6.3)\braket{n_k=1|n_k=1} \tag{1.6.3}

\quad 进一步,我们可以引入湮灭算符a^k\hat{a}_k。它由下两式定义:

a^k0=0(1.6.4)\hat{a}_k \ket{0} = 0 \tag{1.6.4}

a^knk=1=0(1.6.5)\hat{a}_k \ket{n_k=1}=\ket{0} \tag{1.6.5}

上两式也很好理解:湮灭算符作用到真空态等于零,因为没有东西给它湮灭了;k 态湮灭算符作用到nk=1\ket{n_k=1} 湮灭一个 k 态的粒子,等于真空态。
\quad 我们再来看看这样的一个算符n^k=a^ka^k\hat{n}_k=\hat{a}^\dagger_k \hat{a}_k,我们可以验证一下它的作用,将它作用在0\ket{0}nk=1\ket{n_k=1} 可以得到:

a^ka^k0=0(1.6.6)\hat{a}^\dagger_k \hat{a}_k \ket{0} = 0 \tag{1.6.6}

a^ka^knk=1=a^k0=nk=1(1.6.7)\hat{a}^\dagger_k \hat{a}_k \ket{n_k=1} = \hat{a}^\dagger_k \ket{0} = \ket{n_k=1} \tag{1.6.7}

因此,我们可以将n^k\hat{n}_k 定义为粒子数算符。作用在一个态上时,它给出该态中单粒子态 k 被占据的次数。
\quad 此外,我们不难验证a^k\hat{a}_ka^k\hat{a}^\dagger_k 互为共轭关系。(这里就不写验证啦)

\quad 上面说阐述产生算符和湮灭算符的定义和性质,无论是对于费米子体系还是玻色子体系都是适用的。但为了更加细致地研究这些产生、湮灭算符,我们下面将分别考虑全同费米子体系和全同玻色子体系的产生和湮灭算符。一般而言,玻色子体系的产生与湮灭算符用a^k\hat{a}^\dagger_ka^k\hat{a}_k 来表征,而费米子体系的产生与湮灭算符用C^k\hat{C}^\dagger_kC^k\hat{C}_k 来表征。

# 全同费米子体系的产生湮灭算符

  1. 考虑到费米子体系的波函数具有交换反对称性,会导致泡利不相容原理,每一个单粒子态上最多只能允许一个粒子占据。因此我们有:

C^kC^k0=C^knk=1=0(1.6.8)\hat{C}^\dagger_k \hat{C}^\dagger_k \ket{0} = \hat{C}^\dagger_k \ket{n_k=1} = 0 \tag{1.6.8}

因此,我们要求有:

C^kC^k=0(1.6.9)\hat{C}^\dagger_k \hat{C}^\dagger_k = 0 \tag{1.6.9}

取共轭后,也应有:

(C^kC^k)=C^kC^k=0(1.6.10)(\hat{C}^\dagger_k \hat{C}^\dagger_k)^\dagger = \hat{C}_k \hat{C}_k = 0 \tag{1.6.10}

  1. 考虑算符{C^k,C^k}=C^kC^k+C^kC^k\{\hat{C}_k,\hat{C}^\dagger_k\} = \hat{C}_k\hat{C}^\dagger_k + \hat{C}^\dagger_k\hat{C}_k,并且将这个算符分别作用在0\ket{0}nk=1\ket{n_k=1} 上得:

{C^k,C^k}0=C^kC^k0+C^kC^k0=C^knk=1+0=0(1.6.11)\begin{aligned} \{\hat{C}_k,\hat{C}^\dagger_k\} \ket{0} = \hat{C}_k\hat{C}^\dagger_k\ket{0} + \hat{C}^\dagger_k\hat{C}_k\ket{0} = \hat{C}_k \ket{n_k=1} + 0 = \ket{0} \end{aligned} \tag{1.6.11}

{C^k,C^k}nk=1=C^kC^knk=1+C^kC^knk=1=0+C^k0=nk=1(1.6.12)\begin{aligned} \{\hat{C}_k,\hat{C}^\dagger_k\} \ket{n_k=1} &= \hat{C}_k\hat{C}^\dagger_k\ket{n_k=1} + \hat{C}^\dagger_k\hat{C}_k\ket{n_k=1} \\ &= 0 + \hat{C}^\dagger_k\ket{0} = \ket{n_k=1} \end{aligned} \tag{1.6.12}

因此,我们很自然第要求有:

{C^k,C^k}=I^(1.6.13)\{\hat{C}_k,\hat{C}^\dagger_k\} = \hat{I} \tag{1.6.13}

  1. 再考虑算符{C^k,C^k}=C^kC^k+C^kC^k\{\hat{C}^\dagger_k\ ,\hat{C}^\dagger_{k'}\} = \hat{C}^\dagger_k\hat{C}^\dagger_{k'} + \hat{C}^\dagger_{k'}\hat{C}^\dagger_k,其中kkk\ne k',我们可以将它作用到0\ket{0} 态上看看:

{C^k,C^k}0=C^kC^k0+C^kC^k0=nk=1,nk=1+nk=1,nk=1=nk=1,nk=1nk=1,nk=1=0(1.6.14)\begin{aligned} \{\hat{C}^\dagger_k\ ,\hat{C}^\dagger_{k'}\} \ket{0} &= \hat{C}^\dagger_k\hat{C}^\dagger_{k'} \ket{0} + \hat{C}^\dagger_{k'}\hat{C}^\dagger_k \ket{0} \\ &= \ket{n_k=1 , n_{k'}=1} + \ket{n_{k'}=1 , n_k=1} \\ &= \ket{n_k=1 , n_{k'}=1} - \ket{n_k=1 , n_{k'}=1} \\ &= 0 \end{aligned} \tag{1.6.14}

要注意上式运用了以下的定义:

C^kC^k0=nk=1,nk=1(1.6.15)\hat{C}^\dagger_{k'}\hat{C}^\dagger_k \ket{0} = \ket{n_{k'}=1 , n_k=1} \tag{1.6.15}

\quad 由 (1.6.14),我们要求:

{C^k,C^k}=C^kC^k+C^kC^k=0(1.6.15)\{\hat{C}^\dagger_k\ ,\hat{C}^\dagger_{k'}\} = \hat{C}^\dagger_k\hat{C}^\dagger_{k'} + \hat{C}^\dagger_{k'}\hat{C}^\dagger_k = 0 \tag{1.6.15}

你也可以用这个算符作用到其他态上去验证,最终结果都会等于零。同理,取共轭后我们有:

{C^k,C^k}={C^k,C^k}=0(1.6.15)\{\hat{C}^\dagger_k\ ,\hat{C}^\dagger_{k'}\}^\dagger = \{\hat{C}_k\ ,\hat{C}_{k'}\} = 0 \tag{1.6.15}

  1. 我们再来看这样一个算符{C^k,C^k}=C^kC^k+C^kC^k\{\hat{C}_k\ ,\hat{C}^\dagger_{k'}\} = \hat{C}_k\hat{C}^\dagger_{k'} + \hat{C}^\dagger_{k'}\hat{C}_k,我们可以验证这个算符满足以下等式:

{C^k,C^k}=0(1.6.16)\{\hat{C}_k\ ,\hat{C}^\dagger_{k'}\} = 0 \tag{1.6.16}

我们取一个态来验证以下:

{C^k,C^k}nk=0,nk=1=C^kC^knk=0,nk=1+C^kC^knk=0,nk=1=C^kC^knk=1,nk=0+C^knk=1,nk=1=0C^knk=1,nk=1=0(1.6.17)\begin{aligned} \{\hat{C}_k\ ,\hat{C}^\dagger_{k'}\} \ket{n_k=0,n_{k'}=1} &= \hat{C}_k\hat{C}^\dagger_{k'} \ket{n_k=0,n_{k'}=1} + \hat{C}^\dagger_{k'}\hat{C}_k \ket{n_k=0,n_{k'}=1} \\&= -\hat{C}_k\hat{C}^\dagger_{k'} \ket{n_{k'}=1,n_k=0} + \hat{C}^\dagger_{k'} \ket{n_k=1,n_{k'}=1} \\&= 0 - \hat{C}^\dagger_{k'} \ket{n_{k'}=1,n_k=1} = 0 \end{aligned} \tag{1.6.17}

\quad 将上面的四点内容总结为下面四个公式 (一条定义,三条反对易关系) 如下:

C^kC^k=C^kC^k=0{C^k,C^k}=I^{C^k,C^k}={C^k,C^k}=0{C^k,C^k}=0(1.6.18)\begin{array}{|c|} \hline \\ \hat{C}^\dagger_k \hat{C}^\dagger_k = \hat{C}_k \hat{C}_k = 0 \\ \\ \{\hat{C}_k,\hat{C}^\dagger_k\} = \hat{I} \\ \\ \{\hat{C}^\dagger_k\ ,\hat{C}^\dagger_{k'}\} = \{\hat{C}_k\ ,\hat{C}_{k'}\} = 0 \\ \\ \{\hat{C}_k\ ,\hat{C}^\dagger_{k'}\} = 0 \\ \\ \hline \end{array} \tag{1.6.18}

上面的四式概括了费米子产生和湮灭算符的全部代数性质。在以后的计算中,我们只需注意它们,那么费米子体系波函数的交换反对称性就自动满足了!小念叨:在上面的四式,我都没有给证明,而是给验证。而实际上它们也是自洽的。我不知道是否有严格的证明,或者说它的基本假设和公理到底是什么。但至少在田光善老师的讲义中有这么一句 “这些反对易关系的正确性由它们的自洽性来验证”。

# 全同玻色子体系的产生湮灭算符

  1. 由于玻色子不同与费米子,其波函数具有交换对称性,不会导致泡利不相容原理,因此我们一般有:

(a^k)n0(1.6.19)(\hat{a}^\dagger_k)^n \ne 0 \tag{1.6.19}

  1. 考虑到算符[a^k,a^k]=a^ka^ka^ka^k[\hat{a}_k , \hat{a}^\dagger_k] = \hat{a}_k\hat{a}^\dagger_k - \hat{a}^\dagger_k\hat{a}_k, 我们可以验证这个算符满足:

[a^k,a^k]=I^(1.6.20)[\hat{a}_k , \hat{a}^\dagger_k] = \hat{I} \tag{1.6.20}

可以取两个态来验证一下:

[a^k,a^k]0=a^ka^k0a^ka^k0=a^knk=10=0(1.6.21)[\hat{a}_k , \hat{a}^\dagger_k] \ket{0} = \hat{a}_k\hat{a}^\dagger_k\ket{0} - \hat{a}^\dagger_k\hat{a}_k\ket{0} = \hat{a}_k\ket{n_k=1}-0 = \ket{0} \tag{1.6.21}

[a^k,a^k]nk=N=a^ka^knk=Na^ka^knk=N=N+1a^knk=N+1Na^kN1=(N+1)nk=NNnk=1=nk=N(1.6.22)\begin{aligned} [\hat{a}_k , \hat{a}^\dagger_k] \ket{n_k=N} &= \hat{a}_k\hat{a}^\dagger_k\ket{n_k=N}- \hat{a}^\dagger_k\hat{a}_k\ket{n_k=N} \\&= \sqrt{N+1}\hat{a}_k\ket{n_k=N+1} - \sqrt{N}\hat{a}^\dagger_k\ket{N-1} \\&= (N+1)\ket{n_k=N} - N\ket{n_k=1} = \ket{n_k=N} \tag{1.6.22} \end{aligned}

注意,上式的第二条验证中用到了玻色子产生与湮灭算符结果的归一化,这在后面会讲。

  1. 考虑到算符[a^k,a^k]=a^ka^ka^ka^k[\hat{a}^\dagger_k \ , \hat{a}^\dagger_{k'}] = \hat{a}^\dagger_k\hat{a}^\dagger_{k'} - \hat{a}^\dagger_{k'}\hat{a}^\dagger_k。我们可以验证这个算符满足:

[a^k,a^k]=0(1.6.23)[\hat{a}^\dagger_k \ , \hat{a}^\dagger_{k'}] = 0 \tag{1.6.23}

同理取共轭也满足:

[a^k,a^k]=[a^k,a^k]=0(1.6.23)[\hat{a}^\dagger_k \ , \hat{a}^\dagger_{k'}]^\dagger = [\hat{a}_k \ , \hat{a}_{k'}] = 0 \tag{1.6.23}

我们取一个态来验证一下:

[a^k,a^k]nk=N,nk=M=a^ka^knk=N,nk=Ma^ka^knk=N,nk=M=M+1a^knk=N,nk=M+1N+1a^knk=N+1,nk=M=M+1N+1nk=N+1,nk=M+1N+1M+1nk=N+1,nk=M+1=0(1.6.24)\begin{aligned} [\hat{a}^\dagger_k \ , \hat{a}^\dagger_{k'}] \ket{n_k=N , n_{k'}=M} &= \hat{a}^\dagger_k\hat{a}^\dagger_{k'}\ket{n_k=N , n_{k'}=M} - \hat{a}^\dagger_{k'}\hat{a}^\dagger_k\ket{n_k=N , n_{k'}=M} \\&= \sqrt{M+1} \ \hat{a}^\dagger_k \ket{n_k=N , n_{k'}=M+1} - \sqrt{N+1} \ \hat{a}^\dagger_{k'} \ket{n_k=N+1 , n_{k'}=M} \\&= \sqrt{M+1}\sqrt{N+1} \ \ket{n_k=N+1 , n_{k'}=M+1} - \sqrt{N+1}\sqrt{M+1} \ \ket{n_k=N+1 , n_{k'}=M+1} \\&= 0 \end{aligned} \tag{1.6.24}

  1. 再考虑算符[a^k,a^k]=a^ka^ka^ka^k[\hat{a}_k \ , \hat{a}^\dagger_{k'}] = \hat{a}_k\hat{a}^\dagger_{k'} - \hat{a}^\dagger_{k'}\hat{a}_k。我们可以验证这个算符满足:

[a^k,a^k]=0(1.6.25)[\hat{a}_k \ , \hat{a}^\dagger_{k'}] = 0 \tag{1.6.25}

同样,我们取一个态来验证一下:

[a^k,a^k]nk=N,nk=M=a^ka^knk=N,nk=Ma^ka^knk=N,nk=M=M+1a^knk=N,nk=M+1N+1a^knk=N+1,nk=M=M+1N+1nk=N+1,nk=M+1N+1M+1nk=N+1,nk=M+1=0(1.6.26)\begin{aligned} [\hat{a}_k \ , \hat{a}^\dagger_{k'}]\ket{n_k=N , n_{k'}=M} &= \hat{a}_k\hat{a}^\dagger_{k'}\ket{n_k=N , n_{k'}=M} - \hat{a}^\dagger_{k'}\hat{a}_k\ket{n_k=N , n_{k'}=M} \\&= \sqrt{M+1} \ \hat{a}_k\ket{n_k=N , n_{k'}=M+1} - \sqrt{N+1} \ \hat{a}^\dagger_{k'}\ket{n_k=N+1 , n_{k'}=M} \\&= \sqrt{M+1}\sqrt{N+1} \ \ket{n_k=N+1 , n_{k'}=M+1} - \sqrt{N+1}\sqrt{M+1} \ \ket{n_k=N+1 , n_{k'}=M+1} \\&= 0 \end{aligned} \tag{1.6.26}

\quad 将上面的四点内容总结为下面四个公式 (一条定义,三条反对易关系) 如下:

a^ka^k0[a^k,a^k]=I^[a^k,a^k]=[a^k,a^k]=0[a^k,a^k]=0(1.6.27)\begin{array}{|c|} \hline \\ \hat{a}^\dagger_k \hat{a}^\dagger_k \ne 0 \\ \\ [\hat{a}_k \ ,\hat{a}^\dagger_k] = \hat{I} \\ \\ [\hat{a}^\dagger_k\ ,\hat{a}^\dagger_{k'}] = [\hat{a}_k\ ,\hat{a}_{k'}] = 0 \\ \\ [\hat{a}_k\ ,\hat{a}^\dagger_{k'}] = 0 \\ \\ \hline \end{array} \tag{1.6.27}

上面的四式概括了玻色子产生和湮灭算符的全部代数性质。在以后的计算中,我们只需注意它们,那么费米子体系波函数的交换对称性就自动满足了!

# 粒子数表象下的波函数

# 全同费米子体系在粒子数表象下的量子态描述

\quad 我们在上面也提到过,由于全同费米子体系的波函数要满足交换的反对称,因此要严格注意一点:

nk=1,nk=1=nk=1,nk=1(1.7.1)\ket{n_k=1 , n_{k'}=1} = - \ket{n_{k'}=1 , n_k=1} \tag{1.7.1}

但如果粒子数更多,这样的写法就会比较麻烦,因为我们很难一直注意到 ket 内的顺序,其实上式的两个波函数可以写成这样:

nk=1,nk=1=C^kC^k0(1.7.2)\ket{n_k=1 , n_{k'}=1} = \hat{C}^\dagger_k \hat{C}^\dagger_{k'} \ket{0} \tag{1.7.2}

nk=1,nk=1=C^kC^k0(1.7.3)\ket{n_{k'}=1 , n_k=1} = \hat{C}^\dagger_{k'} \hat{C}^\dagger_k \ket{0} \tag{1.7.3}

这样的写法,我们通过 (1.6.27) 中的反对易关系[C^k,C^k]=0[\hat{C}^\dagger_k\ ,\hat{C}^\dagger_{k'}]=0 就可以很轻易地由 (1.7.2)(1.7.3) 推出 (1.7.1), 如下:

C^kC^k0=C^kC^k0nk=1,nk=1=nk=1,nk=1(1.7.4)\begin{aligned} & \hat{C}^\dagger_k \hat{C}^\dagger_{k'} \ket{0} = - \hat{C}^\dagger_{k'} \hat{C}^\dagger_k \ket{0} \\ \Longrightarrow & \ket{n_k=1 , n_{k'}=1} = - \ket{n_{k'}=1 , n_k=1} \end{aligned} \tag{1.7.4}

\quad 同理地,更多粒子的全同费米子体系也可以写成这样:

n1=1,n2=1,,nN=1=C^1C^2C^N0(1.7.5)\ket{n_1=1,n_2=1,\cdots,n_N=1} = \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots\hat{C}^\dagger_N \ket{0} \tag{1.7.5}

\quad 若我们想要在上式中的α\alpha 态上原本是没有粒子的,我们想要在该态上产生一个粒子,我们当然可以直接作用从而写成 (1.7.6) 式,也可以用到{C^k,C^k}=0\{\hat{C}^\dagger_k\ ,\hat{C}^\dagger_{k'}\}=0 的反对易关系写出 (1.7.7) 式:

C^αn1=1,n2=1,,nN=1=C^αC^1C^2C^N0=nα=1,n1=1,n2=1,,nN=1(1.7.6)\begin{aligned} \hat{C}^\dagger_\alpha \ket{n_1=1,n_2=1,\cdots,n_N=1} = \hat{C}^\dagger_\alpha \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots\hat{C}^\dagger_N \ket{0} = \ket{n_\alpha=1,n_1=1,n_2=1,\cdots,n_N=1} \end{aligned} \tag{1.7.6}

C^αn1=1,n2=1,,nN=1=C^αC^1C^2C^N0=(1)C^1C^αC^2C^N0=(1)2C^1C^2C^αC^N0==(1)iC^1C^2C^iC^αC^N0=(1)in1=1,n2=1,,ni=1,nα=1,,nN=1(1.7.7)\begin{aligned} \hat{C}^\dagger_\alpha \ket{n_1=1,n_2=1,\cdots,n_N=1} &= \hat{C}^\dagger_\alpha \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots\hat{C}^\dagger_N \ket{0} \\&= (-1) \hat{C}^\dagger_1 \hat{C}^\dagger_\alpha \hat{C}^\dagger_2 \cdots\hat{C}^\dagger_N \ket{0} \\&= (-1)^2 \hat{C}^\dagger_1 \hat{C}^\dagger_2 \hat{C}^\dagger_\alpha \cdots\hat{C}^\dagger_N \ket{0} \\&= \cdots \\&= (-1)^i \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots \hat{C}^\dagger_i \hat{C}^\dagger_\alpha \cdots \hat{C}^\dagger_N \ket{0} \\&= (-1)^i \ket{n_1=1,n_2=1,\cdots,n_i=1,n_\alpha=1,\cdots,n_N=1} \end{aligned} \tag{1.7.7}

当然,若原本态α\alpha 上就存在粒子,那么由于泡利不相容原理,作用C^α\hat{C}^\dagger_\alpha 后,等于零:

C^αn1=1,n2=1,,nα=1,,nN=1=0(1.7.8)\hat{C}^\dagger_\alpha \ket{n_1=1,n_2=1,\cdots,n_\alpha=1,\cdots,n_N=1} = 0 \tag{1.7.8}

\quad 若我们想要在上式中的α\alpha 态上原本就有一个粒子的,我们想要在该态上湮灭掉这个粒子,则要利用{C^k,C^k}=0\{\hat{C}_k\ ,\hat{C}^\dagger_{k'}\}=0{C^k,C^k}=I^\{\hat{C}_k\ ,\hat{C}^\dagger_k\}=\hat{I} 的反对易关系:

C^αn1=1,n2=1,,ni=1,nα=1,,nN=1=C^αC^1C^2C^iC^αC^N0=(1)C^1C^αC^2C^iC^αC^N0=(1)2C^1C^2C^αC^iC^αC^N0==(1)iC^1C^2C^iC^αC^αC^N0=(1)iC^1C^2C^i[I^C^αC^α]C^N0=(1)iC^1C^2C^iC^N0(1)iC^1C^2C^iC^αC^αC^jC^N0=(1)in1=1,n2=1,,ni=1,nα=0,,nN=1+(1)i+NjC^1C^2C^iC^αC^jC^NC^α0=(1)in1=1,n2=1,,ni=1,nα=0,,nN=1(1.7.9)\begin{aligned} &\quad \ \hat{C}_\alpha \ket{n_1=1,n_2=1,\cdots,n_i=1,n_\alpha=1,\cdots,n_N=1} \\&= \hat{C}_\alpha \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots \hat{C}^\dagger_i \hat{C}^\dagger_\alpha \cdots \hat{C}^\dagger_N \ket{0} \\&= (-1) \hat{C}^\dagger_1 \hat{C}_\alpha \hat{C}^\dagger_2 \cdots \hat{C}^\dagger_i \hat{C}^\dagger_\alpha \cdots \hat{C}^\dagger_N \ket{0} \\&= (-1)^2 \hat{C}^\dagger_1 \hat{C}^\dagger_2 \hat{C}_\alpha \cdots \hat{C}^\dagger_i \hat{C}^\dagger_\alpha \cdots \hat{C}^\dagger_N \ket{0} \\&= \cdots \\&= (-1)^i \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots \hat{C}^\dagger_i \hat{C}_\alpha \hat{C}^\dagger_\alpha \cdots \hat{C}^\dagger_N \ket{0} \\&= (-1)^i \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots \hat{C}^\dagger_i [\hat{I} - \hat{C}^\dagger_\alpha \hat{C}_\alpha] \cdots \hat{C}^\dagger_N \ket{0} \\&= (-1)^i \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots \hat{C}^\dagger_i \cdots \hat{C}^\dagger_N \ket{0} - (-1)^i \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots \hat{C}^\dagger_i \hat{C}^\dagger_\alpha \hat{C}_\alpha \hat{C}_j \cdots \hat{C}^\dagger_N \ket{0} \\&= (-1)^i \ket{n_1=1,n_2=1,\cdots,n_i=1,n_\alpha=0,\cdots,n_N=1} + (-1)^{i+N-j} \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots \hat{C}^\dagger_i \hat{C}^\dagger_\alpha \hat{C}_j \cdots \hat{C}^\dagger_N \hat{C}_\alpha \ket{0} \\&= (-1)^i \ket{n_1=1,n_2=1,\cdots,n_i=1,n_\alpha=0,\cdots,n_N=1} \end{aligned} \tag{1.7.9}

# 全同玻色子体系在粒子数表象下的量子态描述

\quad 同样的,全同玻色子的波函数在粒子数表象下的量子态也可以用产生湮灭算符表示:

nk=N=D(a^k)N0(1.7.10)\ket{n_k=N} = D (\hat{a}^\dagger_k)^N \ket{0} \tag{1.7.10}

但上式右边是一个归一化常数。下面我们想要确定这个归一化常数,我们先来计算(a^k)N0(\hat{a}^\dagger_k)^N \ket{0} 与自身的内积:

IN=((a^k)N0)((a^k)N0)=0(a^k)N(a^k)N0=0(a^k)N1a^ka^k(a^k)N10=0(a^k)N1[I^+a^ka^k](a^k)N10=0(a^k)N1(a^k)N10+0(a^k)N1a^ka^k(a^k)N10(=0(a^k)N1(a^k)N10+(N1)0(a^k)N1(a^k)N10)=IN1+0(a^k)N1a^k[I^+a^ka^k](a^k)N20=2IN1+0(a^k)N1(a^k)2a^k(a^k)N20==NIN1+0(a^k)N1(a^k)Na^k0=NIN1+0=N(N1)IN2==N!(1.7.11)\begin{aligned} I_N &= ((\hat{a}^\dagger_k)^N \ket{0})^\dagger ((\hat{a}^\dagger_k)^N \ket{0}) = \braket{0|(\hat{a}_k)^N(\hat{a}^\dagger_k)^N|0} \\&= \braket{0|(\hat{a}_k)^{N-1} \hat{a}_k \hat{a}^\dagger_k (\hat{a}^\dagger_k)^{N-1}|0} \\&= \braket{0|(\hat{a}_k)^{N-1} \ [\hat{I} + \hat{a}^\dagger_k \hat{a}_k] \ (\hat{a}^\dagger_k)^{N-1}|0} \\&= \braket{0|(\hat{a}_k)^{N-1} (\hat{a}^\dagger_k)^{N-1}|0} + \braket{0|(\hat{a}_k)^{N-1} {\color{red} \hat{a}^\dagger_k \hat{a}_k} (\hat{a}^\dagger_k)^{N-1}|0} \\& {\color{red} \left( = \braket{0|(\hat{a}_k)^{N-1} (\hat{a}^\dagger_k)^{N-1}|0} + (N-1)\braket{0|(\hat{a}_k)^{N-1} (\hat{a}^\dagger_k)^{N-1}|0} \right)} \\&= I_{N-1} + \braket{0|(\hat{a}_k)^{N-1} \hat{a}^\dagger_k \ [\hat{I} + \hat{a}^\dagger_k \hat{a}_k] \ (\hat{a}^\dagger_k)^{N-2}|0} \\&= 2I_{N-1} + \braket{0|(\hat{a}_k)^{N-1} (\hat{a}^\dagger_k)^2 \hat{a}_k (\hat{a}^\dagger_k)^{N-2}|0} \\&= \cdots \\&= NI_{N-1} + \braket{0|(\hat{a}_k)^{N-1} (\hat{a}^\dagger_k)^N \hat{a}_k|0} \\&= NI_{N-1} + 0 = N(N-1)I_{N-2} = \cdots = N! \end{aligned} \tag{1.7.11}

小 tap:其中上式利用到了[a^k,a^k]=I^[\hat{a}_k , \hat{a}^\dagger_k]=\hat{I} 的对易关系,以及标红色部分其实可以直接用粒子数算符n^k=a^ka^k\hat{n}_k=\hat{a}^\dagger_k \hat{a}_k 来直接计算得出结果,但我这里写得详细点,其实也就是推导了一下为什么粒子数算符可以得到某一个态的粒子数,因为上面我写粒子数算符相关内容时并没有给推导,这里就补充一下啦!
因此我们得到归一化因子DD 应该为1N!\frac{1}{\sqrt{N!}},所以我们有:

nk=N=1N!(a^k)N0(1.7.12)\ket{n_k=N} = \frac{1}{\sqrt{N!}} (\hat{a}^\dagger_k)^N \ket{0} \tag{1.7.12}

\quad 对于上式我们进一步做探讨有:

a^knk=N=1N!(a^k)N+10=(N+1)!N!nk=N+1=N+1nk=N+1(1.7.13)\hat{a}^\dagger_k \ket{n_k=N} = \frac{1}{\sqrt{N!}} (\hat{a}^\dagger_k)^{N+1} \ket{0} = \frac{\sqrt{(N+1)!}}{\sqrt{N!}} \ket{n_k=N+1} =\sqrt{N+1} \ket{n_k=N+1} \tag{1.7.13}

以及

a^knk=N=1N!a^k(a^k)N0=1N!(I^+a^ka^k)(a^k)N10=1N!(a^k)N10+1N!n^k(a^k)N10=1N!(a^k)N10+N1N!(a^k)N10=N(N1)!(a^k)N10=Nnk=N1(1.7.14)\begin{aligned} \hat{a}_k \ket{n_k=N} &= \frac{1}{\sqrt{N!}} \hat{a}_k (\hat{a}^\dagger_k)^N \ket{0} = \frac{1}{\sqrt{N!}} (\hat{I} + \hat{a}^\dagger_k\hat{a}_k) (\hat{a}^\dagger_k)^{N-1} \ket{0} \\&= \frac{1}{\sqrt{N!}} (\hat{a}^\dagger_k)^{N-1} \ket{0} + \frac{1}{\sqrt{N!}} \hat{n}_k (\hat{a}^\dagger_k)^{N-1} \ket{0} \\&= \frac{1}{\sqrt{N!}} (\hat{a}^\dagger_k)^{N-1} \ket{0} + \frac{N-1}{\sqrt{N!}} (\hat{a}^\dagger_k)^{N-1} \ket{0} \\&= \frac{\sqrt{N}}{\sqrt{(N-1)!}} (\hat{a}^\dagger_k)^{N-1} \ket{0} = \sqrt{N} \ket{n_k=N-1} \end{aligned} \tag{1.7.14}

总结上面两式,也就是说产生和湮灭算符作用在粒子数表象的波函数上时,有如下结果:

a^knk=N=N+1nk=N+1a^knk=N=Nnk=N1(1.7.15)\begin{array}{|c|} \hline \\ \hat{a}^\dagger_k \ket{n_k=N} = \sqrt{N+1} \ket{n_k=N+1} \\ \\ \hat{a}_k \ket{n_k=N} = \sqrt{N} \ket{n_k=N-1} \\ \\ \hline \end{array} \tag{1.7.15}

\quad 综上,再进行一下推广,不难得到一个多体玻色粒子态可以写作:

nk1,nk2,,nkN=1nk1!nk2!nkN!(a^k1)nk1(a^k2)nk2(a^kN)nkN0(1.7.16)\ket{n_{k_1},n_{k_2},\cdots,n_{k_N}} = \frac{1}{\sqrt{n_{k_1}!n_{k_2}!\cdots n_{k_N}!}} (\hat{a}^\dagger_{k_1})^{n_{k_1}} (\hat{a}^\dagger_{k_2})^{n_{k_2}} \cdots (\hat{a}^\dagger_{k_N})^{n_{k_N}} \ket{0} \tag{1.7.16}

# 玻色子单体和二体算符的表达式

# 单体算符

\quad 在一个多体量子体系中,许多力学量可以被写成下面的形式:

F^=i=1Nf^(qi)(1.8.1)\hat{F} = \sum^N_{i=1} \hat{f}(q_i) \tag{1.8.1}

这种能够表示成 N 个单粒子算符f^(qi)(i=1,2,,N)\hat{f}(q_i)(i=1,2,\cdots,N) 之和的,被称为单体算符。例如粒子系的总动量,总角动量,总动能,总粒子数。另外一提,其实 (1.8.1) 式如果写完整点应该是:

F^=i=1NI^(q1)f^(qi)I^(qN)(1.8.2)\hat{F} = \sum^N_{i=1} \hat{I}(q_1) \otimes \cdots \otimes \hat{f}(q_i) \otimes \cdots \otimes \hat{I}(q_N) \tag{1.8.2}

\quad 对于这类单体算符,我们有等式:

ψnk1,,nkNF^ψnk1,,nkN=Nψnk1,,nkNf^(q1)ψnk1,,nkN或者说写得完整点=Nψnk1,,nkNf^(q1)I^(q2)I^(qN)ψnk1,,nkN(1.8.3)\begin{aligned} \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{F}|\psi_{n'_{k_1},\cdots,n'_{k_N}}} &= N\braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{f}(q_1)|\psi_{n'_{k_1},\cdots,n'_{k_N}}} \\ \text{或者说写得完整点} &= N\braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{f}(q_1) \otimes \hat{I}(q_2) \otimes \cdots \otimes \hat{I}(q_N)|\psi_{n'_{k_1},\cdots,n'_{k_N}}} \end{aligned} \tag{1.8.3}

上式不给证明了。因为写起来很麻烦,但其实不难理解。注意,这一式子对于费米子同样成立。顺便一提,上式中的ψnk1,,nkN\psi_{n_{k_1},\cdots,n_{k_N}} 与我们上面的写法有点不一样,它其实表示的是如同 (1.4.17) 式的一个全同玻色子体系的波函数:

ψnk1,,nkN=ψk1,,k1nk1,k2,,k2nk2,,kN,,kNnkNS(q1,q2,,qN)要满足:nk1+nk2++nkN=N(1.8.4)\psi_{n_{k_1},\cdots,n_{k_N}} = \psi^S_{\underbrace{k_1,\cdots,k_1}_{n_{k_1}个},\underbrace{k_2,\cdots,k_2}_{n_{k_2}个},\cdots,\underbrace{k_N,\cdots,k_N}_{n_{k_N}个}} (q_1,q_2,\cdots,q_N) \\ 要满足:n_{k_1}+n_{k_2}+\cdots+n_{k_N}=N \tag{1.8.4}

\quad

\quad 接下来,我们先来说一下我们要干些什么。我们在量子力学里面也学过,一个算符可以利用一组正交完备的基底波函数写成矩阵的形式。而对于多体量子体系来说也如此,一组ψnk1,,nkN\psi_{n_{k_1},\cdots,n_{k_N}} 也能构成一个正交完备的基底,一个算符也能利用它写成矩阵形式,矩阵的各个矩阵元如下:

ψnk1,,nkNF^ψnk1,,nkN\braket{\psi_{n'_{k_1},\cdots,n'_{k_N}}|\hat{F}|\psi_{n_{k_1},\cdots,n_{k_N}}}

而在许多量子力学的研究工作中,许多都涉及到这种矩阵元的计算,如果我们用波函数的坐标表象来计算多体量子体系的话,将会是十分麻烦的。但如果用粒子数表象的话,事情就会简单很多。这就是为什么引入粒子数表象的一个原因:它能使计算矩阵元变得十分容易。下面我们就来验证,在粒子数表象中,一个单体算符F^\hat{F} 可以被写成:

F^=α,βfα,βa^αa^β(1.8.5)\hat{F} = \sum_{\alpha,\beta} f_{\alpha,\beta} \hat{a}^\dagger_\alpha \hat{a}_\beta \tag{1.8.5}

其中:

fα,β=φαf^φβ(1.8.6)f_{\alpha,\beta} = \braket{\varphi_\alpha|\hat{f}|\varphi_\beta} \tag{1.8.6}

\quad 为了验证,我们先用波函数的坐标表象来计算单体算符的各个矩阵元。对于单体算符来说,只有两种非零矩阵元:

  1. 一种是ψnk1,,nkNF^ψnk1,,nkN=Nψnk1,,nkNf(q1)^ψnk1,,nkN\braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{F}|\psi_{n_{k_1},\cdots,n_{k_N}}}=N\braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{f(q_1)}|\psi_{n_{k_1},\cdots,n_{k_N}}} 的对角矩阵元。

ψnk1,,nkNF^ψnk1,,nkN=Nψnk1,,nkNf(q1)^ψnk1,,nkN=Nnk1!nkN!N!{P^}φk1(qp(1))nk1φkN(qp(N))nkNf(q1)^nk1!nkN!N!{P^}φk1(qp(1))nk1φkN(qp(N))nkN=Nnk1!nkN!N!{P^}{P^}φk1(qp(1))nk1φkN(qp(N))nkNf^(q1)φk1(qp(1))nk1φkN(qp(N))nkN=Nnk1!nkN!N!{P^}φk1(qp(1))nk1φkN(qp(N))nkNf^(q1)φk1(qp(1))nk1φkN(qp(N))nkN=Nnk1!nkN!N!kiφkif^φki{P^}φk1(qp1)φk1(qp1)nk1φk1(qpi)φk1(qpi)nki1φkN(qpN)φk1(qpN)nkN=Nnk1!nkN!N!kiφkif^φki(N1)!nk1!(nki1)!nkN!=kinkiφkif^φki=kinkifkiki(1.8.7)\begin{aligned} & \quad \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{F}|\psi_{n_{k_1},\cdots,n_{k_N}}} \\&= N \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{f(q_1)}|\psi_{n_{k_1},\cdots,n_{k_N}}} \\&= N \bra{\sqrt{\frac{n_{k_1}! \cdots n_{k_N}!}{N!}} \sum_{\{\hat{P}\}} \underbrace{\varphi_{k_1}(q_{p_{(1)}})\otimes\cdots}_{n_{k_1}} \otimes \cdots \otimes\underbrace{\varphi_{k_N}(q_{p_{(N)}})\otimes\cdots}_{n_{k_N}}} \hat{f(q_1)} \\& \qquad \qquad \ket{\sqrt{\frac{n_{k_1}! \cdots n_{k_N}!}{N!}} \sum_{\{\hat{P}\}} \underbrace{\varphi_{k_1}(q_{p_{(1)}})\otimes\cdots}_{n_{k_1}} \otimes \cdots \otimes\underbrace{\varphi_{k_N}(q_{p_{(N)}})\otimes\cdots}_{n_{k_N}}} \\&= N \frac{n_{k_1}! \cdots n_{k_N}!}{N!} \sum_{\{\hat{P}\}} \sum_{\{\hat{P'}\}} \bra{\underbrace{\varphi_{k_1}(q_{p_{(1)}})\otimes\cdots}_{n_{k_1}} \otimes \cdots \otimes\underbrace{\varphi_{k_N}(q_{p_{(N)}})\otimes\cdots}_{n_{k_N}}} \hat{f}(q_1) \\& \qquad \qquad \ket{\underbrace{\varphi_{k_1}(q_{p'_{(1)}})\otimes\cdots}_{n_{k_1}} \otimes \cdots \otimes\underbrace{\varphi_{k_N}(q_{p'_{(N)}})\otimes\cdots}_{n_{k_N}}} \\&= N \frac{n_{k_1}! \cdots n_{k_N}!}{N!} \sum_{\{\hat{P}\}} \bra{\underbrace{\varphi_{k_1}(q_{p_{(1)}})\otimes\cdots}_{n_{k_1}} \otimes \cdots \otimes\underbrace{\varphi_{k_N}(q_{p_{(N)}})\otimes\cdots}_{n_{k_N}}} \hat{f}(q_1) \\& \qquad \qquad \ket{\underbrace{\varphi_{k_1}(q_{p_{(1)}})\otimes\cdots}_{n_{k_1}} \otimes \cdots \otimes\underbrace{\varphi_{k_N}(q_{p_{(N)}})\otimes\cdots}_{n_{k_N}}} \\&= N \frac{n_{k_1}! \cdots n_{k_N}!}{N!} \sum_{k_i} \braket{\varphi_{k_i}|\hat{f}|\varphi_{k_i}} \sum_{\{\hat{P}\}} \underbrace{\braket{\varphi_{k_1}(q_{p_1})|\varphi_{k_1}(q_{p_1})} \otimes \cdots}_{n_{k_1}} \otimes \\& \\& \qquad \qquad \underbrace{\braket{\varphi_{k_1}(q_{p_i})|\varphi_{k_1}(q_{p_i})} \otimes \cdots}_{n_{k_i}-1} \otimes \underbrace{\braket{\varphi_{k_N}(q_{p_N})|\varphi_{k_1}(q_{p_N})} \otimes \cdots}_{n_{k_N}} \\&= N \frac{n_{k_1}! \cdots n_{k_N}!}{N!} \sum_{k_i} \braket{\varphi_{k_i}|\hat{f}|\varphi_{k_i}} \frac{(N-1)!}{n_{k_1}! \cdots (n_{k_i}-1)! \cdots n_{k_N}!} \\&= \sum_{k_i} n_{k_i} \braket{\varphi_{k_i}|\hat{f}|\varphi_{k_i}} = \sum_{k_i} n_{k_i} f_{k_i k_i} \end{aligned} \tag{1.8.7}

  1. 第二种情况是只相差一个单粒子态的矩阵元ψ,nki+1,,nkj1,F^ψ,nki,,nkj,\braket{\psi_{\cdots,n_{k_i}+1,\cdots,n_{k_j}-1,\cdots}|\hat{F}|\psi_{\cdots,n_{k_i},\cdots,n_{k_j},\cdots}}

ψ,nki+1,,nkj1,F^ψ,nki,,nkj,=Nψ,nki+1,,nkj1,f^(q1)ψ,nki,,nkj,=N(nki+1)!(nkj1)!N!{P^}φki(qpi)nki+1φkj(qpj)nkj1f^(q1)nki!nkj!N!{P^}φki(qpi)nkiφkj(qpj)nkj=Nnki!(nkj1)!N!(nki+1)nkj{P^}{P^}φki(qpi)nki+1φkj(qpj)nkj1f^(q1)φki(qpi)nkiφkj(qpj)nkj=Nnki!(nkj1)!N!(nki+1)nkjφkif^φkj{P^}φki(qpi)φki(qpi)nkiφkj(qpj)φkj(qpj)nkj1=Nnki!(nkj1)!N!(nki+1)nkjφkif^φkj(N1)!nki!(nkj1)!=(nki+1)nkjφkif^φkj=(nki+1)nkjfkikj(1.8.8)\begin{aligned} & \quad \braket{\psi_{\cdots,n_{k_i}+1,\cdots,n_{k_j}-1,\cdots}|\hat{F}|\psi_{\cdots,n_{k_i},\cdots,n_{k_j},\cdots}} \\&= N \braket{\psi_{\cdots,n_{k_i}+1,\cdots,n_{k_j}-1,\cdots}|\hat{f}(q_1)|\psi_{\cdots,n_{k_i},\cdots,n_{k_j},\cdots}} \\&= N \bra{\sqrt{\frac{\cdots (n_{k_i}+1)! \cdots (n_{k_j}-1)! \cdots}{N!}} \sum_{\{\hat{P}\}} \cdots \underbrace{\varphi_{k_i(q_{p_i})}\otimes\cdots}_{n_{k_i}+1} \otimes \underbrace{\varphi_{k_j(q_{p_j})}\otimes\cdots}_{n_{k_j}-1} \otimes \cdots} \hat{f}(q_1) \\& \qquad \qquad \ket{\sqrt{\frac{\cdots n_{k_i}! \cdots n_{k_j}! \cdots}{N!}} \sum_{\{\hat{P}\}} \cdots \underbrace{\varphi_{k_i(q_{p_i})}\otimes\cdots}_{n_{k_i}} \otimes \underbrace{\varphi_{k_j(q_{p_j})}\otimes\cdots}_{n_{k_j}} \otimes \cdots } \\&= N \frac{\cdots n_{k_i}! \cdots (n_{k_j}-1)! \cdots}{N!} \sqrt{(n_{k_i}+1)n_{k_j}} \sum_{\{\hat{P}\}} \sum_{\{\hat{P'}\}} \bra{\cdots \underbrace{\varphi_{k_i(q_{p_i})}\otimes\cdots}_{n_{k_i}+1} \otimes \underbrace{\varphi_{k_j(q_{p_j})}\otimes\cdots}_{n_{k_j}-1} \otimes \cdots} \\& \qquad \qquad \hat{f}(q_1) \ket{\cdots \underbrace{\varphi_{k_i(q_{p'_i})}\otimes\cdots}_{n_{k_i}} \otimes \underbrace{\varphi_{k_j(q_{p'_j})}\otimes\cdots}_{n_{k_j}} \otimes \cdots} \\&= N \frac{\cdots n_{k_i}! \cdots (n_{k_j}-1)! \cdots}{N!} \sqrt{(n_{k_i}+1)n_{k_j}} \braket{\varphi_{k_i}|\hat{f}|\varphi_{k_j}} \sum_{\{\hat{P}\}} \cdots \underbrace{\braket{\varphi_{k_i}(q_{p_i})|\varphi_{k_i}(q_{p_i})} \otimes \cdots}_{n_{k_i}} \\& \qquad \qquad \cdots \otimes \underbrace{\braket{\varphi_{k_j}(q_{p_j})|\varphi_{k_j}(q_{p_j})} \otimes \cdots}_{n_{k_j}-1} \\&= N \frac{\cdots n_{k_i}! \cdots (n_{k_j}-1)! \cdots}{N!} \sqrt{(n_{k_i}+1)n_{k_j}} \braket{\varphi_{k_i}|\hat{f}|\varphi_{k_j}} \frac{(N-1)!}{\cdots n_{k_i}! \cdots (n_{k_j}-1)! } \\&= \sqrt{(n_{k_i}+1)n_{k_j}} \braket{\varphi_{k_i}|\hat{f}|\varphi_{k_j}} = \sqrt{(n_{k_i}+1)n_{k_j}} f_{k_i k_j} \end{aligned} \tag{1.8.8}

  1. 用以上方法计算,我们可以算出相差两个或以上单粒子态的矩阵元一定为零。

\quad 上面我们都是用坐标表象来计算的,哪怕只是算了两个式子,也花费了我许多时间,可见这样是麻烦的。但如果我们用粒子数表象来计算,情况会简单许多。我们利用 (1.8.5) 式,对于第一种的对角矩阵可得:

nk1,nk2,,nkNF^nk1,nk2,,nkN=nk1,nk2,,nkNα,βfαβa^αa^βnk1,nk2,,nkN=α,βfαβnk1,nk2,,nkNa^αa^βnk1,nk2,,nkN=kifkikink1,nk2,,nkNn^kink1,nk2,,nkN=kinkifkiki(1.8.9)\begin{aligned} & \braket{n_{k_1},n_{k_2},\cdots,n_{k_N}|\hat{F}|n_{k_1},n_{k_2},\cdots,n_{k_N}} \\=& \braket{n_{k_1},n_{k_2},\cdots,n_{k_N}|\sum_{\alpha,\beta}f_{\alpha\beta}\hat{a}^\dagger_\alpha\hat{a}_\beta|n_{k_1},n_{k_2},\cdots,n_{k_N}} \\=& \sum_{\alpha,\beta}f_{\alpha\beta} \braket{n_{k_1},n_{k_2},\cdots,n_{k_N}|\hat{a}^\dagger_\alpha\hat{a}_\beta|n_{k_1},n_{k_2},\cdots,n_{k_N}} \\=& \sum_{k_i} f_{k_ik_i} \braket{n_{k_1},n_{k_2},\cdots,n_{k_N}|\hat{n}_{k_i}|n_{k_1},n_{k_2},\cdots,n_{k_N}} \\=& \sum_{k_i} n_{k_i} f_{k_ik_i} \end{aligned} \tag{1.8.9}

对于第二种只相差一个单粒子态的矩阵元有:

,nki+1,,nkj1,F^,nki,,nkj,=α,βfαβ,nki+1,,nkj1,a^αa^β,nki,,nkj,=α,βfαβ(nki+1)nkjδα,kiδβ,kj=(nki+1)nkjfkikj(1.8.10)\begin{aligned} & \braket{\cdots,n_{k_i}+1,\cdots,n_{k_j}-1,\cdots|\hat{F}|\cdots,n_{k_i},\cdots,n_{k_j},\cdots} \\=& \sum_{\alpha,\beta}f_{\alpha\beta} \braket{\cdots,n_{k_i}+1,\cdots,n_{k_j}-1,\cdots|\hat{a}^\dagger_\alpha\hat{a}_\beta|\cdots,n_{k_i},\cdots,n_{k_j},\cdots} \\=& \sum_{\alpha,\beta}f_{\alpha\beta} \sqrt{(n_{k_i}+1)n_{k_j}} \delta_{\alpha,k_i} \delta_{\beta,k_j} = \sqrt{(n_{k_i}+1)n_{k_j}} f_{k_ik_j} \end{aligned} \tag{1.8.10}

至此,我们成功验证了 (1.8.5) 式。且也能深刻地体会到,上面两种方法计算矩阵元 (坐标表象和粒子数表象),明显是后者更方便简洁!

# 二体算符

\quad 当讨论粒子之间的相互作用势时,我们就会遇到所谓的两体算符:

G^=i<jg^(qi,qj)(1.8.11)\hat{G} = \sum_{i<j} \hat{g}(q_i,q_j) \tag{1.8.11}

由于一般有g^(qi,qj)=g^(qj,qi)\hat{g}(q_i,q_j)=\hat{g}(q_j,q_i),因此上式种的求和i<j\sum_{i<j} 代表着不重复 i,j 的求和。比如说假若有 N 个粒子,那是上面一共有CN2=N(N1)2C_N^2=\frac{N(N-1)}{2} 项的求和。最常见的一种二体算符是电子之间的相互作用势 (当然电子是费米子,而不是玻色子):

V(q1,q2,,qN)=i<je2rirj(1.8.12)V(q_1,q_2,\cdots,q_N) = \sum_{i<j} \frac{e^2}{|\vec{r}_i-\vec{r}_j|} \tag{1.8.12}

\quad 当然,上面两式的这种写法也是默认简化了的。如果想要完整地写成直积符号的表达方法,我下面就用我的理解来说明一下碎碎念:只是个人的理解,当然不能保证是完全正确的啦!至少现阶段我认为这样的理解虽然是繁杂而且是没必要的,但还是值得啰嗦一下的
\quad 就最简单地来说,一个二体算符G^(q1,q2)\hat{G}(q_1,q_2) 应该是属于H1H2H_1 \otimes H_2 希尔伯特直积空间里面的一个算符,因此它作用的也应该是H1H2H_1 \otimes H_2 空间里面的波函数。如果有一个φk(q1)H1\varphi_k(q_1) \in H_1 空间,一个φk(q2)H2\varphi_{k'}(q_2) \in H_2 空间,那么这两个属于不同空间的单粒子态波函数可以张成一个H1H2H_1 \otimes H_2 空间里的波函数φk(q1)φk(q2)\ket{\varphi_k(q_1)} \otimes \ket{\varphi_{k'}(q_2)}。因此这个二体算符作用上去可以写成:

G^(q1,q2)(φk(q1)φk(q2))或者简写成:G^kk(1.8.13)\hat{G}(q_1,q_2) \left(\ket{\varphi_k(q_1)} \otimes \ket{\varphi_{k'}(q_2)}\right) \\ \text{或者简写成:} \hat{G} \ket{k \ k'} \tag{1.8.13}

因此,我们不难理解,如果想要将 (1.8.11) 式写成完整的形式,应该可以写成如下的形式:

G^=i<jI^(q1)g^(qi,qj)I^(qN)N-1个直积项(1.8.14)\hat{G} = \sum_{i<j} \underbrace{\hat{I}(q_1) \otimes \cdots \otimes \hat{g}(q_i,q_j) \otimes \cdots \otimes \hat{I}(q_N)}_\text{N-1个直积项} \tag{1.8.14}

\quad 对于这类二体算符,与 (1.8.3) 类似,它也满足如下的等式:

ψnk1,,nkNG^ψnk1,,nkN=CN2ψnk1,,nkNg^(q1,q2)ψnk1,,nkN=N(N1)2ψnk1,,nkNg^(q1,q2)ψnk1,,nkN或者写完整一点=N(N1)2ψnk1,,nkNg^(q1,q2)I^(q3)I^(qN)ψnk1,,nkN(1.8.15)\begin{aligned} \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{G}|\psi_{n'_{k_1},\cdots,n'_{k_N}}} &= C_N^2 \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{g}(q_1,q_2)|\psi_{n'_{k_1},\cdots,n'_{k_N}}} \\&= \frac{N(N-1)}{2} \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{g}(q_1,q_2)|\psi_{n'_{k_1},\cdots,n'_{k_N}}} \\ \text{或者写完整一点} &= \frac{N(N-1)}{2} \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{g}(q_1,q_2) \otimes \hat{I}(q_3) \otimes \cdots \otimes \hat{I}(q_N)|\psi_{n'_{k_1},\cdots,n'_{k_N}}} \end{aligned} \tag{1.8.15}

证明就不写啦!但这式子下面要用到。注意,这一式子对于费米子同样成立。

\quad OK! 回到正题,我们现在要做的是证明在粒子数表象下,两体算符总可以写成如下形式:

G^=12α,βα,βgαβ,αβa^αa^βa^βa^α(1.8.16)\begin{aligned} \hat{G} = \frac{1}{2} \sum_{\alpha',\beta'} \sum_{\alpha,\beta} g_{\alpha'\beta',\alpha\beta} \hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'} \hat{a}_{\beta} \hat{a}_{\alpha} \end{aligned} \tag{1.8.16}

其中:

gαβ,αβ=φα(q1)φβ(q2)g^(q1,q2)φα(q1)φβ(q2)=dq1dq2φα(q1)φβ(q2)g^(q1,q2)φα(q1)φβ(q2)(1.8.17)\begin{aligned} g_{\alpha'\beta',\alpha\beta} & = \braket{\varphi_{\alpha'}(q_1) \varphi_{\beta'}(q_2) |\hat{g}(q_1,q_2)| \varphi_{\alpha}(q_1) \varphi_{\beta}(q_2)} \\ &= \int dq_1 dq_2 \ \varphi_{\alpha'}(q_1) \varphi_{\beta'}(q_2) \hat{g}(q_1,q_2) \varphi_{\alpha}(q_1) \varphi_{\beta}(q_2) \end{aligned} \tag{1.8.17}

由于一般的二体算符会有g^(q1,q2)=g^(q2,q1)\hat{g}(q_1,q_2)=\hat{g}(q_2,q_1),因此有如下的等式:

φα(q1)φβ(q2)g^(q1,q2)φα(q1)φβ(q2)=φβ(q1)φα(q2)g^(q1,q2)φβ(q1)φα(q2)αβg^αβ=βαg^βαgαβ,αβ=gβα,βα(1.8.18)\begin{aligned} \braket{\varphi_{\alpha'}(q_1) \varphi_{\beta'}(q_2) |\hat{g}(q_1,q_2)| \varphi_{\alpha}(q_1) \varphi_{\beta}(q_2)} &= \braket{\varphi_{\beta'}(q_1) \varphi_{\alpha'}(q_2) |\hat{g}(q_1,q_2)| \varphi_{\beta}(q_1) \varphi_{\alpha}(q_2)} \\ \Longrightarrow \braket{\alpha'\beta'|\hat{g}|\alpha\beta} &= \braket{\beta'\alpha'|\hat{g}|\beta\alpha} \\ \Longrightarrow g_{\alpha'\beta',\alpha\beta} &= g_{\beta'\alpha',\beta\alpha} \end{aligned} \tag{1.8.18}

这一等式在下面的推导中我们会用到。

\quad 为了验证,我们同样先用坐标表象来计算二体算符的各个矩阵元,然后用粒子数表象来计算,看看两者是否相等。我们同样分别考虑非零对角矩阵元与非对角矩阵元。

  1. 对于对角矩阵元ψnk1,,nkNG^ψnk1,,nkN=N(N1)2ψnk1,,nkNg^(q1,q2)ψnk1,,nkN\braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{G}|\psi_{n_{k_1},\cdots,n_{k_N}}} = \frac{N(N-1)}{2} \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{g}(q_1,q_2)|\psi_{n_{k_1},\cdots,n_{k_N}}},它是非零的。如果用坐标表象的推导方法,如下:

ψnk1,,nkNG^ψnk1,,nkN=N(N1)2ψnk1,,nkNg^(q1,q2)ψnk1,,nkN=N(N1)2nk1!nkN!N!{P^}φk1(qp(1))nk1φkN(qp(N))nkNg^(q1,q2)nk1!nkN!N!{P^}φk1(qp(1))nk1φkN(qp(N))nkN=N(N1)2(nk1!nkN!N!)i<j[φkiφkjg^φkiφkj+φkiφkjg^φkjφki+φkjφkig^φkiφkj+φkjφkig^φkjφki]{P^}φki(qpi)φki(qpi)nki1φkj(qpj)φkj(qpj)nkj1+N(N1)2(nk1!nkN!N!)iφkiφkig^φkiφki{P^}φki(qpi)φki(qpi)nki2=N(N1)(nk1!nkN!N!)i<j[φkiφkjg^φkiφkj+φkiφkjg^φkjφki](N2)!(nki1)!(nkj1)!+N(N1)2(nk1!nkN!N!)iφkiφkig^φkiφki(N2)!nk1!(nki2)!nkN!=i<jnkinkj[φkiφkjg^φkiφkj+φkiφkjg^φkjφki]+12inki(nki1)φkiφkig^φkiφki=i<jnkinkj(gij,ij+gij,ji)+12inki(nki1)gii,ii(1.8.19)\begin{aligned} & \quad \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{G}|\psi_{n_{k_1},\cdots,n_{k_N}}} \\&= \frac{N(N-1)}{2} \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{g}(q_1,q_2)|\psi_{n_{k_1},\cdots,n_{k_N}}} \\&= \frac{N(N-1)}{2} \bra{\sqrt{\frac{n_{k_1}! \cdots n_{k_N}!}{N!}} \sum_{\{\hat{P}\}} \underbrace{\varphi_{k_1}(q_{p_{(1)}})\otimes\cdots}_{n_{k_1}} \otimes \cdots \otimes\underbrace{\varphi_{k_N}(q_{p_{(N)}})\otimes\cdots}_{n_{k_N}}} \hat{g}(q_1,q_2) \\& \qquad \ket{\sqrt{\frac{n_{k_1}! \cdots n_{k_N}!}{N!}} \sum_{\{\hat{P}\}} \underbrace{\varphi_{k_1}(q_{p_{(1)}})\otimes\cdots}_{n_{k_1}} \otimes \cdots \otimes\underbrace{\varphi_{k_N}(q_{p_{(N)}})\otimes\cdots}_{n_{k_N}}} \\&= \frac{N(N-1)}{2} (\frac{n_{k_1}! \cdots n_{k_N}!}{N!})\sum_{i<j} [\braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_i}\varphi_{k_j}} + \braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_j}\varphi_{k_i}} + \braket{\varphi_{k_j}\varphi_{k_i}|\hat{g}|\varphi_{k_i}\varphi_{k_j}} \\& \qquad + \braket{\varphi_{k_j}\varphi_{k_i}|\hat{g}|\varphi_{k_j}\varphi_{k_i}}] \sum_{\{\hat{P}\}}\cdots \otimes\underbrace{\braket{\varphi_{k_i}(q_{p_i})|\varphi_{k_i}(q_{p_i})} \otimes \cdots}_{n_{k_i}-1} \otimes\cdots \otimes\underbrace{\braket{\varphi_{k_j}(q_{p_j})|\varphi_{k_j}(q_{p_j})} \otimes \cdots}_{n_{k_j}-1} \otimes \cdots \\& \quad + \frac{N(N-1)}{2} (\frac{n_{k_1}! \cdots n_{k_N}!}{N!})\sum_i\braket{\varphi_{k_i}\varphi_{k_i}|\hat{g}|\varphi_{k_i}\varphi_{k_i}}\sum_{\{\hat{P}\}}\cdots \otimes \underbrace{\braket{\varphi_{k_i}(q_{p_i})|\varphi_{k_i}(q_{p_i})} \otimes \cdots}_{n_{k_i}-2} \otimes \cdots \\&= N(N-1) (\frac{n_{k_1}! \cdots n_{k_N}!}{N!})\sum_{i<j} \left[ \braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_i}\varphi_{k_j}} + \braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_j}\varphi_{k_i}} \right] \frac{(N-2)!}{\cdots (n_{k_i}-1)! \cdots (n_{k_j}-1)!} \\& \quad + \frac{N(N-1)}{2} (\frac{n_{k_1}! \cdots n_{k_N}!}{N!})\sum_i\braket{\varphi_{k_i}\varphi_{k_i}|\hat{g}|\varphi_{k_i}\varphi_{k_i}} \frac{(N-2)!}{n_{k_1}! \cdots (n_{k_i}-2)! \cdots n_{k_N}!} \\&= \sum_{i<j} n_{k_i} n_{k_j} \left[ \braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_i}\varphi_{k_j}} + \braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_j}\varphi_{k_i}} \right] + \frac{1}{2} \sum_i n_{k_i} (n_{k_i}-1) \braket{\varphi_{k_i}\varphi_{k_i}|\hat{g}|\varphi_{k_i}\varphi_{k_i}} \\&= \sum_{i<j} n_{k_i} n_{k_j} (g_{ij,ij}+g_{ij,ji}) + \frac{1}{2} \sum_i n_{k_i} (n_{k_i}-1) g_{ii,ii} \end{aligned} \tag{1.8.19}

如果用粒子数表象,我们运用到 (1.8.16) 式,如下:

ψnk1,,nkNG^ψnk1,,nkN=nkN,,nk1G^nk1,,nkN=12αβαβgαβ,αβnkN,,nk1a^αa^βa^βa^αnk1,,nkN=12αβαβαβgαβ,αβnkN,,nk1a^αa^β,nα1,,nβ1,nαnβ+12αβαβα=βgαβ,αβnkN,,nk1a^αa^β,nα2,nα(nα1)=12αβα<βgαβ,αβnkN,,nk1a^αa^β,nα1,,nβ1,nαnβ+12αβα<βgαβ,βαnkN,,nk1a^αa^β,nα1,,nβ1,nαnβ+12αβαgαβ,ααnkN,,nk1a^αa^β,nα2,nα(nα1)=12αβα<βgαβ,αβnkN,,nk1a^αa^β,nα1,,nβ1,nαnβδααδββ+12αβα<βgαβ,αβnkN,,nk1a^αa^β,nα1,,nβ1,nαnβδαβδβα+12αβα<βgαβ,βαnkN,,nk1a^αa^β,nα1,,nβ1,nαnβδααδββ+12αβα<βgαβ,βαnkN,,nk1a^αa^β,nα1,,nβ1,nαnβδαβδβα+12αβαgαβ,ααnkN,,nk1a^αa^β,nα2,nα(nα1)δααδβα=12α<βnαnβgαβ,αβ+12α<βnαnβgβα,αβ+12α<βnαnβgαβ,βα+12α<βnαnβgβα,βα+12α<βnα(nα1)gαα,αα=i<jnkinkj(gij,ij+gij,ji)+12inki(nki1)gii,ii(1.8.20)\begin{aligned} & \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{G}|\psi_{n_{k_1},\cdots,n_{k_N}}} \\=& \braket{n_{k_N},\cdots,n_{k_1}|\hat{G}|n_{k_1},\cdots,n_{k_N}} \\=& \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'} \hat{a}_{\beta} \hat{a}_{\alpha}|n_{k_1},\cdots,n_{k_N}} \\=& \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\substack{\alpha\beta \\ \alpha\ne\beta}} g_{\alpha'\beta',\alpha\beta} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{\alpha}-1,\cdots,n_{\beta}-1,\cdots} \sqrt{n_\alpha n_\beta} \\ & \quad +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\substack{\alpha\beta \\ \alpha=\beta}} g_{\alpha'\beta',\alpha\beta} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_\alpha-2,\cdots} \sqrt{n_\alpha(n_\alpha-1)} \\=& \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha<\beta} g_{\alpha'\beta',\alpha\beta} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{\alpha}-1,\cdots,n_{\beta}-1,\cdots} \sqrt{n_\alpha n_\beta} \\ & \quad +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha<\beta} g_{\alpha'\beta',\beta\alpha} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{\alpha}-1,\cdots,n_{\beta}-1,\cdots} \sqrt{n_\alpha n_\beta} \\ & \quad +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha} g_{\alpha'\beta',\alpha\alpha} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_\alpha-2,\cdots} \sqrt{n_\alpha(n_\alpha-1)} \\=& \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha<\beta} g_{\alpha'\beta',\alpha\beta} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{\alpha}-1,\cdots,n_{\beta}-1,\cdots} \sqrt{n_\alpha n_\beta} \ \delta_{\alpha'\alpha} \delta_{\beta'\beta} \\ & \quad +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha<\beta} g_{\alpha'\beta',\alpha\beta} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{\alpha}-1,\cdots,n_{\beta}-1,\cdots} \sqrt{n_\alpha n_\beta} \ \delta_{\alpha'\beta} \delta_{\beta'\alpha} \\ & \quad +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha<\beta} g_{\alpha'\beta',\beta\alpha} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{\alpha}-1,\cdots,n_{\beta}-1,\cdots} \sqrt{n_\alpha n_\beta} \ \delta_{\alpha'\alpha} \delta_{\beta'\beta} \\ & \quad +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha<\beta} g_{\alpha'\beta',\beta\alpha} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{\alpha}-1,\cdots,n_{\beta}-1,\cdots} \sqrt{n_\alpha n_\beta} \ \delta_{\alpha'\beta} \delta_{\beta'\alpha} \\ & \quad + \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha} g_{\alpha'\beta',\alpha\alpha} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_\alpha-2,\cdots} \sqrt{n_\alpha(n_\alpha-1)} \delta_{\alpha'\alpha} \delta_{\beta'\alpha} \\=& \frac{1}{2} \sum_{\alpha<\beta} n_\alpha n_\beta g_{\alpha\beta,\alpha\beta} + \frac{1}{2} \sum_{\alpha<\beta} n_\alpha n_\beta g_{\beta\alpha,\alpha\beta} + \frac{1}{2} \sum_{\alpha<\beta} n_\alpha n_\beta g_{\alpha\beta,\beta\alpha} + \frac{1}{2} \sum_{\alpha<\beta} n_\alpha n_\beta g_{\beta\alpha,\beta\alpha} + \frac{1}{2} \sum_{\alpha<\beta} n_\alpha(n_\alpha-1) g_{\alpha\alpha,\alpha\alpha} \\=& \sum_{i<j} n_{k_i} n_{k_j} (g_{ij,ij}+g_{ij,ji}) + \frac{1}{2} \sum_i n_{k_i} (n_{k_i}-1) g_{ii,ii} \end{aligned} \tag{1.8.20}

因此,在两种表象中给出的G^\hat{G} 的对角矩阵元是完全一样的。

  1. 下面,我们再来考察一下G^\hat{G} 的非对角矩阵元。一般来说,只有下面几种非零的矩阵元:

(nki,nkj,nkk,nkl)(nki1,nkj1,nkk+1,nkl+1)(nki,nkj,nkk,nkl)(nki1,nkj1,nkk+2,nkl)(nki,nkj,nkk,nkl)(nki2,nkj,nkk+2,nkl)(nki,nkj,nkk,nkl)(nki,nkj1,nkk+1,nkl)(1.8.21)\begin{aligned} (n_{k_i},n_{k_j},n_{k_k},n_{k_l}) &\longrightarrow (n_{k_i}-1,n_{k_j}-1,n_{k_k}+1,n_{k_l}+1) \\(n_{k_i},n_{k_j},n_{k_k},n_{k_l}) &\longrightarrow (n_{k_i}-1,n_{k_j}-1,n_{k_k}+2,n_{k_l}) \\(n_{k_i},n_{k_j},n_{k_k},n_{k_l}) &\longrightarrow (n_{k_i}-2,n_{k_j},n_{k_k}+2,n_{k_l}) \\(n_{k_i},n_{k_j},n_{k_k},n_{k_l}) &\longrightarrow (n_{k_i},n_{k_j}-1,n_{k_k}+1,n_{k_l}) \end{aligned} \tag{1.8.21}

这里,我们就不一一讨论了,就以(nki,nkj,nkk,nkl)(nki1,nkj1,nkk+1,nkl+1)(n_{k_i},n_{k_j},n_{k_k},n_{k_l}) \longrightarrow (n_{k_i}-1,n_{k_j}-1,n_{k_k}+1,n_{k_l}+1) 为例做讨论。它在坐标波函数表象中,矩阵元如下:

ψ,nki,nkj,nkk,nkl,G^ψ,nki1,nkj1,nkk+1,nkl+1,=N(N1)2ψ,nki,nkj,nkk,nkl,g^(q1,q2)ψ,nki1,nkj1,nkk+1,nkl+1,=N(N1)2nki!nkj!nkk!nkl!N!(nki1)!(nkj1)!(nkk+1)!(nkl+1)!N![φkiφkjg^φkkφkl+φkiφkjg^φklφkk+φkjφkig^φkkφkl+φkjφkig^φklφkk]{P^}φki(qpi)φki(qpi)nki1φkj(qpj)φkj(qpj)nkj1φkk(qpk)φkk(qpk)nkkφkl(qpl)φkl(qpl)nkl=N(N1)((nki1)!(nkj1)!nkk!nkl!N!)nkinkj(nkk+1)(nkl+1)[φkiφkjg^φkkφkl+φkiφkjg^φklφkk]((N2)!(nki1)!(nkj1)!nkk!nkl!)=nkinkj(nkk+1)(nkl+1)[φkiφkjg^φkkφkl+φkiφkjg^φklφkk]=nkinkj(nkk+1)(nkl+1)(gkikj,kkkl+gkikj,klkk)(1.8.22)\begin{aligned} & \braket{\psi_{\cdots,n_{k_i},n_{k_j},n_{k_k},n_{k_l},\cdots}|\hat{G}|\psi_{\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k}+1,n_{k_l}+1,\cdots}} \\=& \frac{N(N-1)}{2} \braket{\psi_{\cdots,n_{k_i},n_{k_j},n_{k_k},n_{k_l},\cdots}|\hat{g}(q_1,q_2)|\psi_{\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k}+1,n_{k_l}+1,\cdots}} \\=& \frac{N(N-1)}{2} \sqrt{\frac{\cdots n_{k_i}!n_{k_j}!n_{k_k}!n_{k_l}! \cdots}{N!}} \sqrt{\frac{\cdots (n_{k_i}-1)!(n_{k_j}-1)!(n_{k_k}+1)!(n_{k_l}+1)! \cdots}{N!}} \\ & \quad [\braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_k}\varphi_{k_l}} + \braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_l}\varphi_{k_k}} + \braket{\varphi_{k_j}\varphi_{k_i}|\hat{g}|\varphi_{k_k}\varphi_{k_l}} + \braket{\varphi_{k_j}\varphi_{k_i}|\hat{g}|\varphi_{k_l}\varphi_{k_k}}] \\ & \quad \sum_{\{\hat{P}\}} \cdots \otimes \underbrace{\braket{\varphi_{k_i}(q_{p_i})|\varphi_{k_i}(q_{p_i})}\otimes\cdots}_{n_{k_i}-1} \otimes \cdots \otimes \underbrace{\braket{\varphi_{k_j}(q_{p_j})|\varphi_{k_j}(q_{p_j})}\otimes\cdots}_{n_{k_j}-1} \otimes \cdots \otimes \\ & \quad \underbrace{\braket{\varphi_{k_k}(q_{p_k})|\varphi_{k_k}(q_{p_k})}\otimes\cdots}_{n_{k_k}} \otimes \cdots \otimes \underbrace{\braket{\varphi_{k_l}(q_{p_l})|\varphi_{k_l}(q_{p_l})}\otimes\cdots}_{n_{k_l}} \otimes \cdots \\=& N(N-1) (\frac{\cdots (n_{k_i}-1)!(n_{k_j}-1)!n_{k_k}!n_{k_l}! \cdots}{N!}) \sqrt{n_{k_i}n_{k_j}(n_{k_k}+1)(n_{k_l}+1)} \\ & \quad [\braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_k}\varphi_{k_l}} + \braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_l}\varphi_{k_k}}] (\frac{(N-2)!}{\cdots (n_{k_i}-1)!(n_{k_j}-1)!n_{k_k}!n_{k_l}! \cdots}) \\=& \sqrt{n_{k_i}n_{k_j}(n_{k_k}+1)(n_{k_l}+1)} [\braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_k}\varphi_{k_l}} + \braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_l}\varphi_{k_k}}] \\=& \sqrt{n_{k_i}n_{k_j}(n_{k_k}+1)(n_{k_l}+1)} (g_{k_ik_j,k_kk_l}+g_{k_ik_j,k_lk_k}) \end{aligned} \tag{1.8.22}

而在粒子数表象中我们有:

,nkl,,nkk,,nkj,,nki,G^,nki1,,nkj1,,nkk+1,,nkl+1,=12αβαβgαβ,αβ,nkl,nkk,nkj,nki,a^αa^βa^βa^α,nki1,nkj1,nkk+1,nkl+1,=12αβαβgαβ,αβ,nkl,nkk,nkj,nki,a^αa^βa^βa^α,nki1,nkj1,nkk+1,nkl+1,δα,kkδβ,kl+12αβαβgαβ,αβ,nkl,nkk,nkj,nki,a^αa^βa^βa^α,nki1,nkj1,nkk+1,nkl+1,δα,klδβ,kk=12αβgαβ,kkkl,nkl,nkk,nkj,nki,a^αa^β,nki1,nkj1,nkk,nkl,(nkk+1)(nkl+1)+12αβgαβ,klkk,nkl,nkk,nkj,nki,a^αa^β,nki1,nkj1,nkk,nkl,(nkk+1)(nkl+1)=12αβgαβ,kkkl,nkl,nkk,nkj,nki,a^αa^β,nki1,nkj1,nkk,nkl,(nkk+1)(nkl+1)δα,kiδβ,kj+12αβgαβ,kkkl,nkl,nkk,nkj,nki,a^αa^β,nki1,nkj1,nkk,nkl,(nkk+1)(nkl+1)δα,kjδβ,ki+12αβgαβ,klkk,nkl,nkk,nkj,nki,a^αa^β,nki1,nkj1,nkk,nkl,(nkk+1)(nkl+1)δα,kiδβ,kj+12αβgαβ,klkk,nkl,nkk,nkj,nki,a^αa^β,nki1,nkj1,nkk,nkl,(nkk+1)(nkl+1)δα,kjδβ,ki=12gkikj,kkklnkinkj(nkk+1)(nkl+1)+12gkjki,kkklnkinkj(nkk+1)(nkl+1)+12gkikj,klkknkinkj(nkk+1)(nkl+1)+12gkjki,klkknkinkj(nkk+1)(nkl+1)=nkinkj(nkk+1)(nkl+1)(gkikj,kkkl+gkikj,klkk)(1.8.23)\begin{aligned} & \braket{\cdots,n_{k_l},\cdots,n_{k_k},\cdots,n_{k_j},\cdots,n_{k_i},\cdots|\hat{G}|\cdots,n_{k_i}-1,\cdots,n_{k_j}-1,\cdots,n_{k_k}+1,\cdots,n_{k_l}+1,\cdots} \\=& \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'} \hat{a}_{\beta} \hat{a}_{\alpha}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k}+1,n_{k_l}+1,\cdots} \\=& \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'} \hat{a}_{\beta} \hat{a}_{\alpha}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k}+1,n_{k_l}+1,\cdots} \delta_{\alpha,k_k} \delta_{\beta,k_l} \\ & \ +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'} \hat{a}_{\beta} \hat{a}_{\alpha}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k}+1,n_{k_l}+1,\cdots} \delta_{\alpha,k_l} \delta_{\beta,k_k} \\=& \frac{1}{2} \sum_{\alpha'\beta'} g_{\alpha'\beta',k_k k_l} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k},n_{k_l},\cdots} \sqrt{(n_{k_k}+1)(n_{k_l}+1)} \\ & \ +\frac{1}{2} \sum_{\alpha'\beta'} g_{\alpha'\beta',k_l k_k} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k},n_{k_l},\cdots} \sqrt{(n_{k_k}+1)(n_{k_l}+1)} \\= & \frac{1}{2} \sum_{\alpha'\beta'} g_{\alpha'\beta',k_k k_l} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k},n_{k_l},\cdots} \sqrt{(n_{k_k}+1)(n_{k_l}+1)} \delta_{\alpha',k_i} \delta_{\beta',k_j} \\ & \ +\frac{1}{2} \sum_{\alpha'\beta'} g_{\alpha'\beta',k_k k_l} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k},n_{k_l},\cdots} \sqrt{(n_{k_k}+1)(n_{k_l}+1)} \delta_{\alpha',k_j} \delta_{\beta',k_i} \\ & \ +\frac{1}{2} \sum_{\alpha'\beta'} g_{\alpha'\beta',k_l k_k} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k},n_{k_l},\cdots} \sqrt{(n_{k_k}+1)(n_{k_l}+1)} \delta_{\alpha',k_i} \delta_{\beta',k_j} \\ & \ +\frac{1}{2} \sum_{\alpha'\beta'} g_{\alpha'\beta',k_l k_k} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k},n_{k_l},\cdots} \sqrt{(n_{k_k}+1)(n_{k_l}+1)} \delta_{\alpha',k_j} \delta_{\beta',k_i} \\=& \frac{1}{2} g_{k_i k_j,k_k k_l} \sqrt{n_{k_i}n_{k_j}(n_{k_k}+1)(n_{k_l}+1)} + \frac{1}{2} g_{k_j k_i,k_k k_l} \sqrt{n_{k_i}n_{k_j}(n_{k_k}+1)(n_{k_l}+1)} \\ & \ +\frac{1}{2} g_{k_i k_j,k_l k_k} \sqrt{n_{k_i}n_{k_j}(n_{k_k}+1)(n_{k_l}+1)} + \frac{1}{2} g_{k_j k_i,k_l k_k} \sqrt{n_{k_i}n_{k_j}(n_{k_k}+1)(n_{k_l}+1)} \\=& \sqrt{n_{k_i}n_{k_j}(n_{k_k}+1)(n_{k_l}+1)} (g_{k_ik_j,k_kk_l}+g_{k_ik_j,k_lk_k}) \end{aligned} \tag{1.8.23}

现在验证完毕,这两种表象给出的G^\hat{G} 的矩阵元是完全相同的。

# 费米子单体和二体算符的表达式

\quad 在讨论完玻色子算符的表示之后,我们下面就不难来研究费米子的算符表示了。

# 单体算符

\quad 费米子的单体算符在粒子数表象中,亦可以被写为:

F^=α,βfαβC^αC^βfαβ=φαf^φβ(1.9.1)\begin{aligned} \hat{F} = \sum_{\alpha,\beta} f_{\alpha\beta} \hat{C}^\dagger_\alpha \hat{C}_\beta \\ f_{\alpha\beta} = \braket{\varphi_\alpha|\hat{f}|\varphi_\beta} \end{aligned} \tag{1.9.1}

验证方法与上面相同,我们计算在两种不同表象下的矩阵元,看看是否相等。

  1. 对于对角矩阵元,它在波函数坐标表象下,结果如下:

ψα,β,γ,F^ψα,β,γ,=N1N!{P^}δ(P^)φα(qp(1))φβ(qp(2))φγ(qp(3))f^(q1,q2)1N!{P^}δ(P^)φα(qp(1))φβ(qp(2))φγ(qp(3))=N1N!kiφkig^φki{P^}φα(qp(1))φα(qp(1))φβ(qp(2))φβ(qp(2))φγ(qp(3))φγ(qp(3))=N1N!kiφkig^φki(N1)!=kifkiki(1.9.2)\begin{aligned} & \braket{\psi_{\alpha,\beta,\gamma,\cdots}|\hat{F}|\psi_{\alpha,\beta,\gamma,\cdots}} \\=& N \braket{\frac{1}{\sqrt{N!}} \sum_{\{\hat{P}\}} \delta(\hat{P}) \ \varphi_\alpha(q_{p(1)}) \otimes \varphi_\beta(q_{p(2)}) \otimes \varphi_\gamma(q_{p(3)}) \otimes \cdots|\hat{f}(q_1,q_2)|\frac{1}{\sqrt{N!}} \sum_{\{\hat{P}\}} \delta(\hat{P}) \ \varphi_\alpha(q_{p(1)}) \otimes \varphi_\beta(q_{p(2)}) \otimes \varphi_\gamma(q_{p(3)}) \otimes \cdots} \\=& N \frac{1}{N!} \sum_{k_i} \braket{\varphi_{k_i}|\hat{g}|\varphi_{k_i}} \sum_{\{\hat{P}\}} \braket{\varphi_\alpha(q_{p(1)})|\varphi_\alpha(q_{p(1)})} \otimes \braket{\varphi_\beta(q_{p(2)})|\varphi_\beta(q_{p(2)})} \otimes \braket{\varphi_\gamma(q_{p(3)})|\varphi_\gamma(q_{p(3)})} \otimes \cdots \\=& N \frac{1}{N!} \sum_{k_i} \braket{\varphi_{k_i}|\hat{g}|\varphi_{k_i}} (N-1)! \\=& \sum_{k_i} f_{k_ik_i} \end{aligned} \tag{1.9.2}

而用粒子数表象,结果如下:

,k3,k2,k1G^k1,k2,k3,=αβfαβ,k3,k2,k1C^αC^βk1,k2,k3,=αβfαβ,k3,k2,k1C^αC^βk1,k2,k3,,ki,kiδβ,ki(1)i1=αki(1)i1fαki,k3,k2,k1C^αk1,k2,k3,,nki=0,δα,ki(1)i1=kifkiki(1.9.3)\begin{aligned} & \braket{\cdots,k_3,k_2,k_1|\hat{G}|k_1,k_2,k_3,\cdots} \\=& \sum_{\alpha\beta} f_{\alpha\beta} \braket{\cdots,k_3,k_2,k_1|\hat{C}^\dagger_\alpha \hat{C}_\beta|k_1,k_2,k_3,\cdots} \\=& \sum_{\alpha\beta} f_{\alpha\beta} \braket{\cdots,k_3,k_2,k_1|\hat{C}^\dagger_\alpha \hat{C}_\beta|k_1,k_2,k_3,\cdots,k_i,\cdots} \sum_{k_i} \delta_{\beta,k_i} (-1)^{i-1} \\=& \sum_{\alpha} \sum_{k_i} (-1)^{i-1} f_{\alpha k_i} \braket{\cdots,k_3,k_2,k_1|\hat{C}^\dagger_\alpha|k_1,k_2,k_3,\cdots,n_{k_i}=0,\cdots} \delta_{\alpha,k_i} (-1)^{i-1} \\=& \sum_{k_i} f_{k_i k_i} \end{aligned} \tag{1.9.3}

因此可以验证两种表象计算出了的对角矩阵元是完全相等的。值得注意的是,上两式的最终结果中的ki\sum_{k_i} 求和,是对原本就有费米子占据的态的求和,若一些态是没有被费米子占据的,那么它就对这个矩阵元没有贡献。
2. 对于非对角矩阵元,只有初态和末态之间最多相差一个单粒子态,否则矩阵元为零。这种矩阵元,用波函数坐标表象计算如下:

ψk1,,nki=0,,kj,F^ψk1,,ki,,nkj=0,=Nψk1,,nki=0,,kj,f^ψk1,,ki,,nkj=0,=N1N!{P^}δ(P^)φki1(qpi1)φki+1(qpi)φkj1(qpj2)φkj(qpj1)φkj+1(qpj)f^1N!{P^}δ(P^)φki1(qpi1)φki(qpi)φki+1(qpi+1)φkj1(qpj1)φkj+1(qpj)(用连续的相邻对换将上面的φki从自由度qpi移至pj1的位置,由于每次对换给出一个因子(1),因此会多出一个(1)a=i+1j1nka)=N(1)a=i+1j1nka1N!{P^}δ(P^)φki1(qpi1)φki+1(qpi)φkj1(qpj2)φkj(qpj1)φkj+1(qpj)f^1N!{P^}δ(P^)φki1(qpi1)φki+1(qpi)φkj1(qpj2)φki(qpj1)φkj+1(qpj)=N(1)a=i+1j1nka1N!φkjf^φki{P^}φki1(qpi1)φki1(qpi1)φki+1(qpi)φki+1(qpi)φkj1(qpj2)φkj1(qpj2)φkj+1(qpj)φkj+1(qpj)=N(1)a=i+1j1nka1N!φkjf^φki(N1)!=(1)a=i+1j1nkafkjki(1.9.4)\begin{aligned} & \braket{\psi_{k_1,\cdots,n_{k_i}=0,\cdots,k_j,\cdots}|\hat{F}|\psi_{k_1,\cdots,k_i,\cdots,n_{k_j}=0,\cdots}} \\=& N \braket{\psi_{k_1,\cdots,n_{k_i}=0,\cdots,k_j,\cdots}|\hat{f}|\psi_{k_1,\cdots,k_i,\cdots,n_{k_j}=0,\cdots}} \\=& N \bra{\frac{1}{\sqrt{N!}} \sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \varphi_{k_{i-1}}(q_{p_{i-1}}) \otimes \varphi_{k_{i+1}}(q_{p_{i}}) \otimes \cdots \varphi_{k_{j-1}}(q_{p_{j-2}}) \otimes \varphi_{k_{j}}(q_{p_{j-1}}) \otimes \varphi_{k_{j+1}}(q_{p_{j}}) \otimes \cdots} \\ & \ \hat{f} \ket{\frac{1}{\sqrt{N!}} \sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \varphi_{k_{i-1}}(q_{p_{i-1}}) \otimes \varphi_{k_{i}}(q_{p_{i}}) \otimes \varphi_{k_{i+1}}(q_{p_{i+1}}) \otimes \cdots \otimes\varphi_{k_{j-1}}(q_{p_{j-1}}) \otimes \varphi_{k_{j+1}}(q_{p_{j}}) \otimes \cdots} \\ & \text{\footnotesize (用连续的相邻对换将上面的$\varphi_{k_{i}}$从自由度$q_{p_{i}}$移至$p_{j-1}$的位置,由于每次对换给出一个因子$(-1)$,因此会多出一个$(-1)^{\sum_{a=i+1}^{j-1}n_{k_a}}$)} \\=& N (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} \bra{\frac{1}{\sqrt{N!}} \sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \varphi_{k_{i-1}}(q_{p_{i-1}}) \otimes \varphi_{k_{i+1}}(q_{p_{i}}) \otimes \cdots \varphi_{k_{j-1}}(q_{p_{j-2}}) \otimes \varphi_{k_{j}}(q_{p_{j-1}}) \otimes \varphi_{k_{j+1}}(q_{p_{j}}) \otimes \cdots} \\ & \ \hat{f} \ket{\frac{1}{\sqrt{N!}} \sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \varphi_{k_{i-1}}(q_{p_{i-1}}) \otimes \varphi_{k_{i+1}}(q_{p_{i}}) \otimes \cdots \varphi_{k_{j-1}}(q_{p_{j-2}}) \otimes \varphi_{k_{i}}(q_{p_{j-1}}) \otimes \varphi_{k_{j+1}}(q_{p_{j}}) \otimes \cdots} \\=& N (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} \frac{1}{N!} \braket{\varphi_{k_j}|\hat{f}|\varphi_{k_i}} \sum_{\{\hat{P}\}} \cdots \braket{\varphi_{k_{i-1}}(q_{p_{i-1}})|\varphi_{k_{i-1}}(q_{p_{i-1}})} \otimes \braket{\varphi_{k_{i+1}}(q_{p_{i}})|\varphi_{k_{i+1}}(q_{p_{i}})} \otimes \cdots \otimes \\ & \ \braket{\varphi_{k_{j-1}}(q_{p_{j-2}})|\varphi_{k_{j-1}}(q_{p_{j-2}})} \otimes \braket{\varphi_{k_{j+1}}(q_{p_{j}})|\varphi_{k_{j+1}}(q_{p_{j}})} \otimes \cdots \\=& N (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} \frac{1}{N!} \braket{\varphi_{k_j}|\hat{f}|\varphi_{k_i}} (N-1)! \\=& (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} f_{k_jk_i} \end{aligned} \tag{1.9.4}

在粒子数表象中,我们有:

,nkj=1,,nki=0,G^,nki=1,,nkj=0,=αβfαβ,nkj=1,,nki=0,C^αC^β,nki=1,,nkj=0,=αβfαβ,nkj=1,,nki=0,C^αC^β,nki=1,,nkj=0,δβ,ki=αfαki,nkj=1,,nki=0,C^α,nki=0,,nkj=0,(1)a=1i1nkaδα,kj=fkjki(1)a=1i1nka[(1)a=1i1nka(1)a=i+1j1nka]注意这里是因为nki=0=(1)a=i+1j1nkafkjki(1.9.5)\begin{aligned} & \braket{\cdots,n_{k_j}=1,\cdots,n_{k_i}=0,\cdots|\hat{G}|\cdots,n_{k_i}=1,\cdots,n_{k_j}=0,\cdots} \\=& \sum_{\alpha\beta} f_{\alpha\beta} \braket{\cdots,n_{k_j}=1,\cdots,n_{k_i}=0,\cdots|\hat{C}^\dagger_\alpha \hat{C}_\beta|\cdots,n_{k_i}=1,\cdots,n_{k_j}=0,\cdots} \\=& \sum_{\alpha\beta} f_{\alpha\beta} \braket{\cdots,n_{k_j}=1,\cdots,n_{k_i}=0,\cdots|\hat{C}^\dagger_\alpha \hat{C}_\beta|\cdots,n_{k_i}=1,\cdots,n_{k_j}=0,\cdots} \delta_{\beta,k_i} \\=& \sum_{\alpha} f_{\alpha k_i} \braket{\cdots,n_{k_j}=1,\cdots,n_{k_i}=0,\cdots|\hat{C}^\dagger_\alpha|\cdots,n_{k_i}=0,\cdots,n_{k_j}=0,\cdots} (-1)^{\sum_{a=1}^{i-1}n_{k_a}} \delta_{\alpha,k_j} \\=& f_{k_jk_i} (-1)^{\sum_{a=1}^{i-1}n_{k_a}} [(-1)^{\sum_{a=1}^{i-1}n_{k_a}} (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}}] \textcolor{red}{注意这里是因为n_{k_i}=0} \\=& (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} f_{k_jk_i} \end{aligned} \tag{1.9.5}

两者给出的结果完全相同。

# 二体算符

\quad 对于费米子的二体算符,在粒子数表象中可以被写为:

G^=12αβαβgαβ,αβC^αC^βC^βC^αgαβ,αβ=ψαψβg^ψαψβ=dq1dq2ψα(q1)ψβ(q2)g^(q1,q2)ψα(q1)ψβ(q2)(1.9.6)\begin{aligned} \hat{G} &= \frac{1}{2} \sum_{\alpha'\beta} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha} \\ g_{\alpha'\beta',\alpha\beta} &= \braket{\psi_{\alpha'}\psi_{\beta'}|\hat{g}|\psi_{\alpha}\psi_{\beta}} = \int dq_1 dq_2 \ \psi_{\alpha'}^*(q_1) \psi_{\beta'}^*(q_2) \hat{g}(q_1,q_2) \psi_{\alpha}(q_1) \psi_{\beta}(q_2) \end{aligned} \tag{1.9.6}

\quad 下面我们同样来计算它的各个矩阵元:

  1. 对于对角矩阵元,在波函数坐标表象下计算,结果如下:

ψnk1,nk2,G^ψnk1,nk2,=N(N1)2ψnk1,nk2,g^(q1,q2)ψnk1,nk2,=N(N1)21N!{P^}δ(P^)φk1(qp1)φk2(qp2)g^(q1,q2)1N!{P^}δ(P^)φk1(qp1)φk2(qp2)=N(N1)21N!i<j{P^}δ(P^)φki(qp1)φkj(qp2)g^{P^}δ(P^)φki(qp1)φkj(qp2){P^}φki1(qpi1)φki1(qpi1)φki+1(qpi+1)φki+1(qpi+1)φkj1(qpj1)φkj1(qpj1)φkj+1(qpj+1)φkj+1(qpj+1)=N(N1)21N!i<j[φki(q1)φkj(q2)g(q1,q2)φki(q1)φkj(q2)φki(q1)φkj(q2)g(q1,q2)φki(q2)φkj(q1)φki(q2)φkj(q1)g(q1,q2)φki(q1)φkj(q2)+φki(q2)φkj(q1)g(q1,q2)φki(q2)φkj(q1)](N2)!=12i<j2[φkiφkjg^φkiφkjφkiφkjg^φkjφki]=i<j(gkikj,kikjgkikj,kjki)=i<jnkinkj(gkikj,kikjgkikj,kjki)最后一步等式中nkinkj的出现,这样写是为了更明确一点:若φkiφkj不出现在ψnk1,nk2,中,则该项的贡献为零。若你不写出nkinkj,你一定要明确知道求和i<j是只对ψnk1,nk2,中出现的态作考虑。(1.9.7)\begin{aligned} & \braket{\psi_{n_{k_1},n_{k_2},\cdots}|\hat{G}|\psi_{n_{k_1},n_{k_2},\cdots}} \\=& \frac{N(N-1)}{2} \braket{\psi_{n_{k_1},n_{k_2},\cdots}|\hat{g}(q_1,q_2)|\psi_{n_{k_1},n_{k_2},\cdots}} \\=& \frac{N(N-1)}{2} \bra{\frac{1}{\sqrt{N!}} \sum_{\{\hat{P}\}} \delta(\hat{P}) \ \varphi_{k_1}(q_{p_1}) \otimes \varphi_{k_2}(q_{p_2}) \otimes \cdots} \hat{g}(q_1,q_2) \ket{\frac{1}{\sqrt{N!}} \sum_{\{\hat{P}\}} \delta(\hat{P}) \ \varphi_{k_1}(q_{p_1}) \otimes \varphi_{k_2}(q_{p_2}) \otimes \cdots} \\=& \frac{N(N-1)}{2} \frac{1}{N!} \sum_{i<j} \braket{\sum_{\{\hat{P}\}} \delta(\hat{P}) \ \varphi_{k_i}(q_{p_1}) \otimes \varphi_{k_j}(q_{p_2})|\hat{g}|\sum_{\{\hat{P}\}} \delta(\hat{P}) \ \varphi_{k_i}(q_{p_1}) \otimes \varphi_{k_j}(q_{p_2})} \\ & \ \sum_{\{\hat{P}\}} \cdots \otimes \braket{\varphi_{k_{i-1}}(q_{p_{i-1}})|\varphi_{k_{i-1}}(q_{p_{i-1}})} \otimes \braket{\varphi_{k_{i+1}}(q_{p_{i+1}})|\varphi_{k_{i+1}}(q_{p_{i+1}})} \otimes \cdots \otimes \\ & \ \braket{\varphi_{k_{j-1}}(q_{p_{j-1}})|\varphi_{k_{j-1}}(q_{p_{j-1}})} \otimes \braket{\varphi_{k_{j+1}}(q_{p_{j+1}})|\varphi_{k_{j+1}}(q_{p_{j+1}})} \otimes \cdots \\=& \frac{N(N-1)}{2} \frac{1}{N!} \sum_{i<j} \big[\braket{\varphi_{k_i}(q_1) \varphi_{k_j}(q_2)|g(q_1,q_2)|\varphi_{k_i}(q_1) \varphi_{k_j}(q_2)} - \braket{\varphi_{k_i}(q_1) \varphi_{k_j}(q_2)|g(q_1,q_2)|\varphi_{k_i}(q_2) \varphi_{k_j}(q_1)} \\ & \ -\braket{\varphi_{k_i}(q_2) \varphi_{k_j}(q_1)|g(q_1,q_2)|\varphi_{k_i}(q_1) \varphi_{k_j}(q_2)} + \braket{\varphi_{k_i}(q_2) \varphi_{k_j}(q_1)|g(q_1,q_2)|\varphi_{k_i}(q_2) \varphi_{k_j}(q_1)}\big] (N-2)! \\=& \frac{1}{2} \sum_{i<j} 2 [\braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_i}\varphi_{k_j}}-\braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_j}\varphi_{k_i}}] \\=& \sum_{i<j} (g_{k_ik_j,k_ik_j} - g_{k_ik_j,k_jk_i}) \textcolor{red}{= \sum_{i<j} n_{k_i} n_{k_j} (g_{k_ik_j,k_ik_j} - g_{k_ik_j,k_jk_i})} \\ & \textcolor{red}{\small 最后一步等式中n_{k_i} n_{k_j}的出现,这样写是为了更明确一点:若\varphi_{k_i}和\varphi_{k_j}不出现在\psi_{n_{k_1},n_{k_2},\cdots}中,则该项的贡献为零。} \\ & \textcolor{red}{\small 若你不写出n_{k_i} n_{k_j},你一定要明确知道求和\sum_{i<j}是只对\psi_{n_{k_1},n_{k_2},\cdots}中出现的态作考虑。} \end{aligned} \tag{1.9.7}

而在粒子数表象下的计算结果如下:

,nk2,nk1G^nk1,nk2,=12αβαβgαβ,αβ,nk2,nk1C^αC^βC^βC^αnk1,nk2,=12αβαβgαβ,αβ,nk2,nk1C^αC^βC^βC^αnk1,nk2,δα,αδβ,β+12αβαβgαβ,αβ,nk2,nk1C^αC^βC^βC^αnk1,nk2,δα,βδβ,α=12αβgαβ,αβ,nk2,nk1C^αC^βC^βC^αnk1,nk2,+12αβgαβ,βα,nk2,nk1C^αC^βC^αC^βnk1,nk2,下面利用到{C^α,C^β}=0{C^α,C^β}=0=12αβgαβ,αβ,nk2,nk1C^βC^βC^αC^αnk1,nk2,12αβgαβ,βα,nk2,nk1C^αC^αC^βC^βnk1,nk2,=12αβgαβ,αβ,nk2,nk1n^βn^αnk1,nk2,12αβgαβ,βα,nk2,nk1n^αn^βnk1,nk2,=12αβnαnβ(gαβ,αβgαβ,βα)=i<jnkinkj(gkikj,kikjgkikj,kjki)(1.9.8)\begin{aligned} & \braket{\cdots,n_{k_2},n_{k_1}|\hat{G}|n_{k_1},n_{k_2},\cdots} \\=& \frac{1}{2} \sum_{\alpha'\beta} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,n_{k_2},n_{k_1}|\hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha}|n_{k_1},n_{k_2},\cdots} \\=& \frac{1}{2} \sum_{\alpha' \ne \beta} \sum_{\alpha \ne \beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,n_{k_2},n_{k_1}|\hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha}|n_{k_1},n_{k_2},\cdots} \delta_{\alpha',\alpha} \delta_{\beta',\beta} \\ & \ +\frac{1}{2} \sum_{\alpha' \ne \beta} \sum_{\alpha \ne \beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,n_{k_2},n_{k_1}|\hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha}|n_{k_1},n_{k_2},\cdots} \delta_{\alpha',\beta} \delta_{\beta',\alpha} \\=& \frac{1}{2} \sum_{\alpha \ne \beta} g_{\alpha\beta,\alpha\beta} \braket{\cdots,n_{k_2},n_{k_1}|\hat{C}^\dagger_{\alpha} \hat{C}^\dagger_{\beta} \hat{C}_{\beta} \hat{C}_{\alpha}|n_{k_1},n_{k_2},\cdots} \\ & \ +\frac{1}{2} \sum_{\alpha \ne \beta} g_{\alpha\beta,\beta\alpha} \braket{\cdots,n_{k_2},n_{k_1}|\hat{C}^\dagger_{\alpha} \hat{C}^\dagger_{\beta} \hat{C}_{\alpha} \hat{C}_{\beta}|n_{k_1},n_{k_2},\cdots} \\ & \textcolor{red}{\small 下面利用到\{\hat{C}^\dagger_\alpha,\hat{C}^\dagger_\beta\}=0和\{\hat{C}^\dagger_\alpha,\hat{C}_\beta\}=0} \\=& \frac{1}{2} \sum_{\alpha \ne \beta} g_{\alpha\beta,\alpha\beta} \braket{\cdots,n_{k_2},n_{k_1}|\hat{C}^\dagger_{\beta} \hat{C}_{\beta} \hat{C}^\dagger_{\alpha} \hat{C}_{\alpha}|n_{k_1},n_{k_2},\cdots} \\ & \ -\frac{1}{2} \sum_{\alpha \ne \beta} g_{\alpha\beta,\beta\alpha} \braket{\cdots,n_{k_2},n_{k_1}|\hat{C}^\dagger_{\alpha} \hat{C}_{\alpha} \hat{C}^\dagger_{\beta}\hat{C}_{\beta}|n_{k_1},n_{k_2},\cdots} \\=& \frac{1}{2} \sum_{\alpha \ne \beta} g_{\alpha\beta,\alpha\beta} \braket{\cdots,n_{k_2},n_{k_1}|\hat{n}_\beta\hat{n}_\alpha|n_{k_1},n_{k_2},\cdots} \\ & \ -\frac{1}{2} \sum_{\alpha \ne \beta} g_{\alpha\beta,\beta\alpha} \braket{\cdots,n_{k_2},n_{k_1}|\hat{n}_\alpha\hat{n}_\beta|n_{k_1},n_{k_2},\cdots} \\=& \frac{1}{2} \sum_{\alpha \ne \beta} n_\alpha n_\beta (g_{\alpha\beta,\alpha\beta} - g_{\alpha\beta,\beta\alpha}) = \sum_{i<j} n_{k_i} n_{k_j} (g_{k_ik_j,k_ik_j} - g_{k_ik_j,k_jk_i}) \end{aligned} \tag{1.9.8}

计算结果两者是完全一样的。

  1. 对于非对角矩阵元,只有一种不为零。它在波函数坐标表象中计算如下:

ψ,nki=0,,nkj=0,,kk,,kl,G^ψ,ki,,kj,,nkk=0,,nkl=0,=N(N1)2ψ,nki=0,,nkj=0,,kk,,kl,g^(q1,q2)ψ,ki,,kj,,nkk=0,,nkl=0,=N(N1)21N!{P^}δ(P^)φkiφkjφkk(qpk2)φkl(qpl2)g^(q1,q2){P^}δ(P^)φki(qpi)φkj(qpj)φkkφkl(用连续的相邻对换将上面的φkj从自由度qpj移至pl2的位置,会多出一个(1)a=j+1k1nka(1)a=k+1l1nka)=N(N1)21N!{P^}δ(P^)φkiφkjφkk(qpk2)φkl(qpl2)g^(q1,q2){P^}δ(P^)φki(qpi)φklφkkφkj(qpl2)(1)a=j+1k1nka(1)a=k+1l1nka(再用连续的相邻对换将上面的φki从自由度qpi移至pk2的位置,会多出一个(1)a=i+1j1nka(1)a=j+1k1nka)=N(N1)21N!{P^}δ(P^)φkiφkjφkk(qpk2)φkl(qpl2)g^(q1,q2){P^}δ(P^)φkkφklφki(qpk2)φkj(qpl2)(1)a=j+1k1nka(1)a=k+1l1nka(1)a=i+1j1nka(1)a=j+1k1nka=N(N1)21N!(1)a=i+1j1nka(1)a=k+1l1nka{P^}δ(P^)φkk(qp1)φkl(qp2)g^(q1,q2){P^}δ(P^)φki(qp1)φkj(qp2){P^}φk1(qp1)φk1(qp1)φkiφkiφkjφkjφkkφkkφklφklφkN+2(qpN2)φkN+2(qpN2)=N(N1)21N!(1)a=i+1j1nka(1)a=k+1l1nka(N2)![φkkφklg^φkiφkjφkkφklg^φkjφki+φklφkkg^φkiφkjφklφkkg^φkjφki]=(1)a=i+1j1nka(1)a=k+1l1nka[φkkφklg^φkiφkjφklφkkg^φkiφkj]=(1)a=i+1j1nka(1)a=k+1l1nka(gkkkl,kikjgklkk,kikj)(1.9.9)\begin{aligned} & \braket{\psi_{\cdots,n_{k_i}=0,\cdots,n_{k_j}=0,\cdots,k_k,\cdots,k_l,\cdots}|\hat{G}|\psi_{\cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots}} \\=& \frac{N(N-1)}{2} \braket{\psi_{\cdots,n_{k_i}=0,\cdots,n_{k_j}=0,\cdots,k_k,\cdots,k_l,\cdots}|\hat{g}(q_1,q_2)|\psi_{\cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots}} \\=& \frac{N(N-1)}{2} \frac{1}{N!} \bra{\sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \xcancel{\varphi_{k_i}} \otimes \cdots \otimes \xcancel{\varphi_{k_j}} \otimes \cdots \otimes \varphi_{k_k}(q_{p_{k-2}}) \cdots \otimes \varphi_{k_l}(q_{p_{l-2}}) \otimes \cdots} \\ & \ \hat{g}(q_1,q_2) \ket{\sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \varphi_{k_i}(q_{p_{i}}) \otimes \cdots \otimes \varphi_{k_j}(q_{p_{j}}) \otimes \cdots \otimes \xcancel{\varphi_{k_k}} \otimes \cdots \otimes \xcancel{\varphi_{k_l}} \otimes \cdots} \\ & \text{\footnotesize (用连续的相邻对换将上面的$\varphi_{k_{j}}$从自由度$q_{p_{j}}$移至$p_{l-2}$的位置,会多出一个$(-1)^{\sum_{a=j+1}^{k-1}n_{k_a}} (-1)^{\sum_{a=k+1}^{l-1}n_{k_a}}$)} \\=& \frac{N(N-1)}{2} \frac{1}{N!} \bra{\sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \xcancel{\varphi_{k_i}} \otimes \cdots \otimes \xcancel{\varphi_{k_j}} \otimes \cdots \otimes \varphi_{k_k}(q_{p_{k-2}}) \cdots \otimes \varphi_{k_l}(q_{p_{l-2}}) \otimes \cdots} \\ & \ \hat{g}(q_1,q_2) \ket{\sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \varphi_{k_i}(q_{p_{i}}) \otimes \cdots \otimes \xcancel{\varphi_{k_l}} \otimes \cdots \otimes \xcancel{\varphi_{k_k}} \otimes \cdots \otimes \varphi_{k_j}(q_{p_{l-2}}) \otimes \cdots} \\ & \ (-1)^{\sum_{a=j+1}^{k-1}n_{k_a}} (-1)^{\sum_{a=k+1}^{l-1}n_{k_a}} \\ & \text{\footnotesize (再用连续的相邻对换将上面的$\varphi_{k_{i}}$从自由度$q_{p_{i}}$移至$p_{k-2}$的位置,会多出一个$(-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} (-1)^{\sum_{a=j+1}^{k-1}n_{k_a}}$)} \\=& \frac{N(N-1)}{2} \frac{1}{N!} \bra{\sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \xcancel{\varphi_{k_i}} \otimes \cdots \otimes \xcancel{\varphi_{k_j}} \otimes \cdots \otimes \varphi_{k_k}(q_{p_{k-2}}) \cdots \otimes \varphi_{k_l}(q_{p_{l-2}}) \otimes \cdots} \\ & \ \hat{g}(q_1,q_2) \ket{\sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \xcancel{\varphi_{k_k}} \otimes \cdots \otimes \xcancel{\varphi_{k_l}} \otimes \cdots \otimes \varphi_{k_i}(q_{p_{k-2}}) \otimes \cdots \otimes \varphi_{k_j}(q_{p_{l-2}}) \otimes \cdots} \\ & \ (-1)^{\sum_{a=j+1}^{k-1}n_{k_a}} (-1)^{\sum_{a=k+1}^{l-1}n_{k_a}} (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} (-1)^{\sum_{a=j+1}^{k-1}n_{k_a}} \\=& \frac{N(N-1)}{2} \frac{1}{N!} (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} (-1)^{\sum_{a=k+1}^{l-1}n_{k_a}} \bra{\sum_{\{\hat{P}\}} \delta(\hat{P}) \varphi_{k_k}(q_{p_{1}}) \otimes \varphi_{k_l}(q_{p_{2}})} \hat{g}(q_1,q_2) \ket{\sum_{\{\hat{P}\}} \delta(\hat{P}) \varphi_{k_i}(q_{p_{1}}) \otimes \varphi_{k_j}(q_{p_{2}})} \\ & \ \sum_{\{\hat{P}\}} \braket{\varphi_{k_1}(q_{p_1})|\varphi_{k_1}(q_{p_1})} \cdots \xcancel{\braket{\varphi_{k_i}|\varphi_{k_i}}} \cdots \xcancel{\braket{\varphi_{k_j}|\varphi_{k_j}}} \cdots \xcancel{\braket{\varphi_{k_k}|\varphi_{k_k}}} \cdots \xcancel{\braket{\varphi_{k_l}|\varphi_{k_l}}} \cdots \braket{\varphi_{k_{N+2}}(q_{p_{N-2}})|\varphi_{k_{N+2}}(q_{p_{N-2}})} \\=& \frac{N(N-1)}{2} \frac{1}{N!} (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} (-1)^{\sum_{a=k+1}^{l-1}n_{k_a}} (N-2)! \\ & \ [\braket{\varphi_{k_k}\varphi_{k_l}|\hat{g}|\varphi_{k_i}\varphi_{k_j}} - \braket{\varphi_{k_k}\varphi_{k_l}|\hat{g}|\varphi_{k_j}\varphi_{k_i}} + \braket{\varphi_{k_l}\varphi_{k_k}|\hat{g}|\varphi_{k_i}\varphi_{k_j}} - \braket{\varphi_{k_l}\varphi_{k_k}|\hat{g}|\varphi_{k_j}\varphi_{k_i}}] \\=& (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} (-1)^{\sum_{a=k+1}^{l-1}n_{k_a}} [\braket{\varphi_{k_k}\varphi_{k_l}|\hat{g}|\varphi_{k_i}\varphi_{k_j}} - \braket{\varphi_{k_l}\varphi_{k_k}|\hat{g}|\varphi_{k_i}\varphi_{k_j}}] \\=& (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} (-1)^{\sum_{a=k+1}^{l-1}n_{k_a}} (g_{k_kk_l,k_ik_j}-g_{k_lk_k,k_ik_j}) \end{aligned} \tag{1.9.9}

若采用粒子数表象,则如下:

,kl,,kk,,nkj=0,,nki=0,G^,ki,,kj,,nkk=0,,nkl=0,=12αβαβgαβ,αβ,kl,,kk,,nkj=0,,nki=0,C^αC^βC^βC^α,ki,,kj,,nkk=0,,nkl=0,=12αβαβgαβ,αβ,kl,,kk,,nkj=0,,nki=0,C^αC^βC^βC^α,ki,,kj,,nkk=0,,nkl=0,δα,kiδβ,kjδα,kkδβ,kl+12αβαβgαβ,αβ,kl,,kk,,nkj=0,,nki=0,C^αC^βC^βC^α,ki,,kj,,nkk=0,,nkl=0,δα,kiδβ,kjδα,klδβ,kk+12αβαβgαβ,αβ,kl,,kk,,nkj=0,,nki=0,C^αC^βC^βC^α,ki,,kj,,nkk=0,,nkl=0,δα,kjδβ,kiδα,kkδβ,kl+12αβαβgαβ,αβ,kl,,kk,,nkj=0,,nki=0,C^αC^βC^βC^α,ki,,kj,,nkk=0,,nkl=0,δα,kjδβ,kiδα,klδβ,kk=12gkkkl,kikj,kl,,kk,,nkj=0,,nki=0,C^kkC^klC^kjC^ki,ki,,kj,,nkk=0,,nkl=0,+12gklkk,kikj,kl,,kk,,nkj=0,,nki=0,C^klC^kkC^kjC^ki,ki,,kj,,nkk=0,,nkl=0,+12gkkkl,kjki,kl,,kk,,nkj=0,,nki=0,C^kkC^klC^kiC^kj,ki,,kj,,nkk=0,,nkl=0,+12gklkk,kjki,kl,,kk,,nkj=0,,nki=0,C^klC^kkC^kiC^kj,ki,,kj,,nkk=0,,nkl=0,=gkkkl,kikj,kl,,kk,,nkj=0,,nki=0,C^kkC^klC^kjC^ki,ki,,kj,,nkk=0,,nkl=0,+gklkk,kikj,kl,,kk,,nkj=0,,nki=0,C^klC^kkC^kjC^ki,ki,,kj,,nkk=0,,nkl=0,=gkkkl,kikj,kl,,kk,,nkj=0,,nki=0,C^kkC^klC^kjC^ki,ki,,kj,,nkk=0,,nkl=0,gklkk,kikj,kl,,kk,,nkj=0,,nki=0,C^kkC^klC^kjC^ki,ki,,kj,,nkk=0,,nkl=0,=(gkkkl,kikjgklkk,kikj)[(1)a=1i1na][(1)a=1i1na(1)a=i+1j1na][(1)a=1i1na(1)a=i+1j1na(1)a=j+1k1na(1)a=k+1l1na][(1)a=1i1na(1)a=i+1j1na(1)a=j+1k1na]=(gkkkl,kikjgklkk,kikj)(1)a=i+1j1nka(1)a=k+1l1nka(1.9.10)\begin{aligned} & \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{G}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\=& \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\=& \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \delta_{\alpha,k_i} \delta_{\beta,k_j} \delta_{\alpha',k_k} \delta_{\beta',k_l} \\ & \ +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \delta_{\alpha,k_i} \delta_{\beta,k_j} \delta_{\alpha',k_l} \delta_{\beta',k_k} \\ & \ +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \delta_{\alpha,k_j} \delta_{\beta,k_i} \delta_{\alpha',k_k} \delta_{\beta',k_l} \\ & \ +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \delta_{\alpha,k_j} \delta_{\beta,k_i} \delta_{\alpha',k_l} \delta_{\beta',k_k} \\=& \frac{1}{2} g_{k_k k_l,k_i k_j} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{k_k} \hat{C}^\dagger_{k_l} \hat{C}_{k_j} \hat{C}_{k_i}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\ & \ +\frac{1}{2} g_{k_l k_k,k_i k_j} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{k_l} \hat{C}^\dagger_{k_k} \hat{C}_{k_j} \hat{C}_{k_i}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\ & \ +\frac{1}{2} g_{k_k k_l,k_j k_i} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{k_k} \hat{C}^\dagger_{k_l} \hat{C}_{k_i} \hat{C}_{k_j}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\ & \ +\frac{1}{2} g_{k_l k_k,k_j k_i} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{k_l} \hat{C}^\dagger_{k_k} \hat{C}_{k_i} \hat{C}_{k_j}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\=& g_{k_k k_l,k_i k_j} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{k_k} \hat{C}^\dagger_{k_l} \hat{C}_{k_j} \hat{C}_{k_i}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\ & \ +g_{k_l k_k,k_i k_j} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{k_l} \hat{C}^\dagger_{k_k} \hat{C}_{k_j} \hat{C}_{k_i}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\=& g_{k_k k_l,k_i k_j} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{k_k} \hat{C}^\dagger_{k_l} \hat{C}_{k_j} \hat{C}_{k_i}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\ & \ -g_{k_l k_k,k_i k_j} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{k_k} \hat{C}^\dagger_{k_l} \hat{C}_{k_j} \hat{C}_{k_i}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\=& (g_{k_k k_l,k_i k_j}-g_{k_l k_k,k_i k_j}) \ [(-1)^{\sum_{a=1}^{i-1}n_a}] \cdot [(-1)^{\sum_{a=1}^{i-1}n_a} (-1)^{\sum_{a=i+1}^{j-1}n_a}] \cdot [(-1)^{\sum_{a=1}^{i-1}n_a} (-1)^{\sum_{a=i+1}^{j-1}n_a} (-1)^{\sum_{a=j+1}^{k-1}n_a} (-1)^{\sum_{a=k+1}^{l-1}n_a}] \cdot [(-1)^{\sum_{a=1}^{i-1}n_a} (-1)^{\sum_{a=i+1}^{j-1}n_a} (-1)^{\sum_{a=j+1}^{k-1}n_a}] \\=& (g_{k_k k_l,k_i k_j}-g_{k_l k_k,k_i k_j}) (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} (-1)^{\sum_{a=k+1}^{l-1}n_{k_a}} \end{aligned} \tag{1.9.10}

可见两者结果完全一致。

碎碎念:终于!!!写完这两节真的废了很大的劲,这样具体的计算细节太多了,我实在没有能力写好,写明确。呜呜呜˃̣̣̥᷄⌓˂̣̣̥᷅~~ 所以,我认为以后再看上面的计算多半应该是看不懂的。到那个时候,可以自己回去再看看曾谨言的《量子力学 (卷 Ⅱ》的相应内容吧,那边写得还是详细。但其实用粒子数表象来推导算符的矩阵元的话,确实不算太困难,抓住一点不要犯错就行:玻色子一个态可以容纳多个粒子,但不同态的产生和湮灭算符具有对易关系;而费米子一个态只能容纳一个粒子,但不同态的产生和湮灭算符具有反对易关系。说白了就是要抓住 (1.6.18)(1.6.27 (1.7.15) 这几个式子。

# 例题:动能算符的粒子数表象形式

\quad 在坐标表象中,N 个全同粒子体系的动能算符可以被写作:

T^=i=1NP^i22m=22mi=1Ni2(1.10.1)\hat{T} = \sum^N_{i=1} \frac{\hat{P}^2_i}{2m} = -\frac{\hbar^2}{2m} \sum^N_{i=1} \nabla_i^2 \tag{1.10.1}

而在粒子数表象中,它应被写作:

T^=α,βTα,βa^αa^β(1.10.2)\hat{T} = \sum_{\alpha,\beta} T_{\alpha,\beta} \hat{a}^\dagger_\alpha \hat{a}_\beta \tag{1.10.2}

我们具体计算一下它的矩阵元:

Tαβ=φα(22m2)φβ=22mdr(1Vexp(ikαr))2(1Vexp(ikβr))=2kβ22m1Vdrexp[i(kβkα)r]=2kβ22mδαβ(1.10.3)\begin{aligned} T_{\alpha\beta} &= \braket{\varphi_\alpha|(-\frac{\hbar^2}{2m}\nabla^2)|\varphi_\beta} \\&= -\frac{-\hbar^2}{2m} \int d\vec{r} \ \left(\frac{1}{\sqrt{V}} \exp(i\vec{k}_\alpha \cdot \vec{r})\right)^* \nabla^2 \left(\frac{1}{\sqrt{V}} \exp(i\vec{k}_\beta \cdot \vec{r})\right) \\&= \frac{\hbar^2 k^2_\beta}{2m} \frac{1}{V} \int d\vec{r} \exp[i(\vec{k}_\beta-\vec{k}_\alpha)\cdot \vec{r}] \\&= \frac{\hbar^2 k^2_\beta}{2m} \delta_{\alpha \beta} \end{aligned} \tag{1.10.3}

代入算符T^\hat{T} 的表达式后,我们得到:

T^=α,β2kβ22mδαβa^αa^β=α2kα22ma^αa^α(1.10.4)\hat{T} = \sum_{\alpha,\beta} \frac{\hbar^2 k^2_\beta}{2m} \delta_{\alpha \beta} \hat{a}^\dagger_\alpha \hat{a}_\beta = \sum_{\alpha} \frac{\hbar^2 k^2_\alpha}{2m} \hat{a}^\dagger_\alpha \hat{a}_\alpha \tag{1.10.4}

\quad
\quad
\quad
\quad
#######################
\quad 这章的最后我要说明一下我的一个表达可能会出现的误区。在上面我一直说两种东西,一个是粒子数表象,一个是波函数坐标表象 (或者我会写成坐标表象或波函数表象)。但这样的写法或许不太好,因为我们知道,如果是两种表象的话,一定存在他俩之间的表象变化,那如果问他们之间的表象变化是什么呢,这是无法回答的。因为本身不应该用两种不同的表象来区分它们,更准确地来说应该是两种语言,一种是粒子数语言,另一种波函数坐标语言。只不过在不同的情况下,用哪种语言会更加方便而已。
#######################


  1. q1q_1q2q_2 代表了两个例子的全部自由度(包括空间坐标、自旋等),以后我们的笔记会经常出现。 ↩︎

  2. 什么是直积?其实我觉得可以理解成一种张量积。 ↩︎

  3. 看,这里用坐标表象,就不得不先要把粒子编号,这样是繁杂的。 ↩︎