# 全同粒子\quad 自然界中存在各种各样不同种类的粒子,如电子、质子、中子、光子、π 介子等。同一类粒子具有完全相同的内禀属性,包括静止质量、电荷、自旋、磁矩、寿命等。事实上人们正是按照这些内禀属性来对粒子进行分类的。\quad 在量子力学中,把属于同一类的粒子,或者说把具有完全相同的内禀属性的粒子,称为全同粒子 。值得强调的是,粒子全同性概念与粒子态的量子化有本质的联系,如果没有态的量子化,就谈不上全同性。在经典物理学中,由于粒子的性质和状态(质量,形状,大小等)都是可以连续变化的,谈不上两个粒子真正全同。但在量子力学中,由于态的量子化,两个量子态要么完全相同,要么很不相同。
\quad 在量子力学中,我们在原则上不可能对一组同类粒子进行个别追踪从而鉴别它们。我们可以这样说,量子力学中的全同粒子完全失去了它们的 “个别性”。这就是所谓的全同粒子不可分辨性原理 。\quad 我对这一原理是这样理解的:或许我们可以在某一时刻把一些电子加以定位和编号。但由于测不准原理,我们不可能一直跟踪这些电子(因为位置和动量是不能同时精准确定的),因此在下一次测量时,我们无法确认与上个时刻测量出来的处于相同位置或者有相同态的电子是否就是上一次测量出来的那个电子,还是说是其他的电子,这是我们不可分辨的。因此,在某一时刻对这些电子加以定位和编号,对以后时刻的鉴别工作毫无帮助。
\quad 设由两个全同粒子组成的体系,用一个波函数ψ k 1 , k 2 ( q 1 , q 2 ) ψ_{k_1,k_2 } (q_1,q_2 ) ψ k 1 , k 2 ( q 1 , q 2 ) 描述它为:q 1 q_1 q 1 的粒子在k 1 k_1 k 1 态上,q 2 q_2 q 2 的粒子在k 2 k_2 k 2 态上。若我们引入一个交换算符:
P ~ ψ k 1 , k 2 ( q 1 , q 2 ) = ψ k 1 , k 2 ( q 2 , q 1 ) (1.1.1) \tilde{P}\psi_{k_1,k_2}(q_1,q_2)=\psi_{k_1,k_2}(q_2,q_1) \tag{1.1.1} P ~ ψ k 1 , k 2 ( q 1 , q 2 ) = ψ k 1 , k 2 ( q 2 , q 1 ) ( 1 . 1 . 1 )
也就是把 “第一个粒子” 和 “第二个粒子” 所扮演的角色互换一下。那么问题是,ψ k 1 , k 2 ( q 1 , q 2 ) \psi_{k_1,k_2}(q_1,q_2) ψ k 1 , k 2 ( q 1 , q 2 ) 和ψ k 1 , k 2 ( q 2 , q 1 ) \psi_{k_1,k_2}(q_2,q_1) ψ k 1 , k 2 ( q 2 , q 1 ) 所表示的量子态有什么不同吗?答案是:并没有什么不同!应为全同粒子的内禀属性是完全相同的,由于不可分辨性,我们根本无法(也没有必要)分辨究竟是q 1 q_1 q 1 的粒子在k 1 k_1 k 1 态上,q 2 q_2 q 2 的粒子在k 2 态 k_2态 k 2 态 上,还是q 1 q_1 q 1 的粒子在k 2 k_2 k 2 态上,q 2 q_2 q 2 的粒子在k 1 k_1 k 1 态上。更直白地说,我们一开始的 “第一个粒子” 和 “第二个粒子” 的说法本身就有问题,因为我们根本没办法进行编号!\quad 因此ψ k 1 , k 2 ( q 1 , q 2 ) \psi_{k_1,k_2}(q_1,q_2) ψ k 1 , k 2 ( q 1 , q 2 ) 和ψ k 1 , k 2 ( q 2 , q 1 ) \psi_{k_1,k_2}(q_2,q_1) ψ k 1 , k 2 ( q 2 , q 1 ) 所描述的就是同一个量子态!两个波函数之间仅仅是相差一个相因子:
ψ k 1 , k 2 ( q 1 , q 2 ) = C ψ k 1 , k 2 ( q 1 , q 2 ) (1.1.2) \psi_{k_1,k_2}(q_1,q_2)=C\psi_{k_1,k_2}(q_1,q_2) \tag{1.1.2} ψ k 1 , k 2 ( q 1 , q 2 ) = C ψ k 1 , k 2 ( q 1 , q 2 ) ( 1 . 1 . 2 )
那么这个相因子是多少?我们可以把交换算符连续作用两次,其实就是不变的变化,可得:
P ~ 2 ψ k 1 , k 2 ( q 1 , q 2 ) = C P ~ ψ k 1 , k 2 ( q 1 , q 2 ) = C 2 ψ k 1 , k 2 ( q 1 , q 2 ) = ψ k 1 , k 2 ( q 1 , q 2 ) (1.1.3) \begin{aligned} \tilde{P}^2\psi_{k_1,k_2}(q_1,q_2)=C\tilde{P}\psi_{k_1,k_2}(q_1,q_2)=C^2\psi_{k_1,k_2}(q_1,q_2)=\psi_{k_1,k_2}(q_1,q_2) \tag{1.1.3} \end{aligned} P ~ 2 ψ k 1 , k 2 ( q 1 , q 2 ) = C P ~ ψ k 1 , k 2 ( q 1 , q 2 ) = C 2 ψ k 1 , k 2 ( q 1 , q 2 ) = ψ k 1 , k 2 ( q 1 , q 2 ) ( 1 . 1 . 3 )
由上式便可得:
C = ± 1 (1.1.4) C=\pm 1 \tag{1.1.4} C = ± 1 ( 1 . 1 . 4 )
因此交换算符的本征值有且只能有两个,1 或 - 1。对于本征值为 1 的波函数,称为对称波函数,其对应的粒子为玻色子;对于本征值为 - 1 的波函数,称为反对称波函数,其对应的粒子为费米子。\quad 上式情况,也可以推广到 N 个粒子。
\quad 在上面,我们用ψ k 1 , k 2 ( q 1 , q 2 ) \psi_{k_1,k_2}(q_1,q_2) ψ k 1 , k 2 ( q 1 , q 2 ) 这样的表象(坐标表象)来描绘全同粒子体系,但这样显然是不好的。因为这似乎前提就给粒子编号了,而我们知道全同粒子是无法编号的。所以,我们将会在这一章的后面引入一个更为简洁的表象来研究全同粒子,也就是这一章的标题 —— 粒子数表象。\quad 小节的最后,还应提一嘴的是:全同性是量子场论的一个推论,虽然在量子力学的框架中,它是作为原理之一出现的。碎碎念:虽然这句话我现在还不能理解,但如果以后有机会学量子场论的话,可以再回过头来体会一下这句话。2023.7.30
# 两个全同粒子组成的体系\quad 下面我们讨论由两个全同粒子组成的体系,为了方便起见,我们忽略粒子之间的相互作用与自旋。这个体系的哈密顿算符为:
H 2 ^ = − ℏ 2 2 m ∇ r ⃗ 1 2 − ℏ 2 2 m ∇ r ⃗ 2 2 (1.2.1) \hat{H_2}=-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_1}-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_2} \tag{1.2.1} H 2 ^ = − 2 m ℏ 2 ∇ r 1 2 − 2 m ℏ 2 ∇ r 2 2 ( 1 . 2 . 1 )
而我们不难验证其中如下的波函数是它的一个本征波函数:
ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 1 , r ⃗ 2 ) = ( 1 V e i k ⃗ 1 ⋅ r ⃗ 1 ) ( 1 V e i k ⃗ 2 ⋅ r ⃗ 2 ) (1.2.2) \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2)=(\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \tag{1.2.2} ψ k 1 , k 2 ( r 1 , r 2 ) = ( V 1 e i k 1 ⋅ r 1 ) ( V 1 e i k 2 ⋅ r 2 ) ( 1 . 2 . 2 )
验证如下:
H ^ 2 ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 1 , r ⃗ 2 ) = ( − ℏ 2 2 m ∇ r ⃗ 1 2 − ℏ 2 2 m ∇ r ⃗ 2 2 ) [ ( 1 V e i k ⃗ 1 ⋅ r ⃗ 1 ) ( 1 V e i k ⃗ 2 ⋅ r ⃗ 2 ) ] = ( 1 V e i k ⃗ 2 ⋅ r ⃗ 2 ) ( − ℏ 2 2 m ∇ r ⃗ 1 2 ) ( 1 V e i k ⃗ 1 ⋅ r ⃗ 1 ) + ( 1 V e i k ⃗ 1 ⋅ r ⃗ 1 ) ( − ℏ 2 2 m ∇ r ⃗ 2 2 ) ( 1 V e i k ⃗ 2 ⋅ r ⃗ 2 ) = ( ℏ 2 k 1 2 2 m ) ( 1 V e i k ⃗ 1 ⋅ r ⃗ 1 ) ( 1 V e i k ⃗ 2 ⋅ r ⃗ 2 ) + ( ℏ 2 k 2 2 2 m ) ( 1 V e i k ⃗ 1 ⋅ r ⃗ 1 ) ( 1 V e i k ⃗ 2 ⋅ r ⃗ 2 ) = ( ℏ 2 k 1 2 2 m + ℏ 2 k 2 2 2 m ) ( 1 V e i k ⃗ 1 ⋅ r ⃗ 1 ) ( 1 V e i k ⃗ 2 ⋅ r ⃗ 2 ) = ( ℏ 2 k 1 2 2 m + ℏ 2 k 2 2 2 m ) ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 1 , r ⃗ 2 ) (1.2.3) \begin{aligned} \hat{H}_2 \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) &=(-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_1}-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_2}) \bigg[(\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2})\bigg] \\&=(\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_1}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) + (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_2}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \\&= (\frac{\hbar^2k^2_1}{2m}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) + (\frac{\hbar^2k_2^2}{2m}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \\&= (\frac{\hbar^2k^2_1}{2m}+\frac{\hbar^2k_2^2}{2m}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \\&= (\frac{\hbar^2k^2_1}{2m}+\frac{\hbar^2k_2^2}{2m}) \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) \tag{1.2.3} \end{aligned} H ^ 2 ψ k 1 , k 2 ( r 1 , r 2 ) = ( − 2 m ℏ 2 ∇ r 1 2 − 2 m ℏ 2 ∇ r 2 2 ) [ ( V 1 e i k 1 ⋅ r 1 ) ( V 1 e i k 2 ⋅ r 2 ) ] = ( V 1 e i k 2 ⋅ r 2 ) ( − 2 m ℏ 2 ∇ r 1 2 ) ( V 1 e i k 1 ⋅ r 1 ) + ( V 1 e i k 1 ⋅ r 1 ) ( − 2 m ℏ 2 ∇ r 2 2 ) ( V 1 e i k 2 ⋅ r 2 ) = ( 2 m ℏ 2 k 1 2 ) ( V 1 e i k 1 ⋅ r 1 ) ( V 1 e i k 2 ⋅ r 2 ) + ( 2 m ℏ 2 k 2 2 ) ( V 1 e i k 1 ⋅ r 1 ) ( V 1 e i k 2 ⋅ r 2 ) = ( 2 m ℏ 2 k 1 2 + 2 m ℏ 2 k 2 2 ) ( V 1 e i k 1 ⋅ r 1 ) ( V 1 e i k 2 ⋅ r 2 ) = ( 2 m ℏ 2 k 1 2 + 2 m ℏ 2 k 2 2 ) ψ k 1 , k 2 ( r 1 , r 2 ) ( 1 . 2 . 3 )
\quad 上面我们是按通常的运算方式来理解的,但其更加细致严格的理解应该是按照 “直积⊗ \otimes ⊗ ” 来理解。利用直积的符号,就可以将上式更具体地写为如下,哈密顿算符写为:
H ^ 2 = [ ( − ℏ 2 2 m ∇ r ⃗ 1 2 ) ⊗ I ^ 2 ] + [ I ^ 1 ⊗ ( − ℏ 2 2 m ∇ r ⃗ 2 2 ) ] (1.2.4) \begin{aligned} \hat{H}_2 =\bigg[(-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_1}) \otimes \hat{I}_2 \bigg]+ \bigg[\hat{I}_1 \otimes (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_2}) \bigg] \tag{1.2.4} \end{aligned} H ^ 2 = [ ( − 2 m ℏ 2 ∇ r 1 2 ) ⊗ I ^ 2 ] + [ I ^ 1 ⊗ ( − 2 m ℏ 2 ∇ r 2 2 ) ] ( 1 . 2 . 4 )
其中I ^ 1 \hat{I}_1 I ^ 1 与I ^ 2 \hat{I}_2 I ^ 2 分别是对 “第一” 与 “第二” 粒子的单位算符。波函数ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 1 , r ⃗ 2 ) \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) ψ k 1 , k 2 ( r 1 , r 2 ) 写成:
ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 1 , r ⃗ 2 ) = ( 1 V e i k ⃗ 1 ⋅ r ⃗ 1 ) ⊗ ( 1 V e i k ⃗ 2 ⋅ r ⃗ 2 ) (1.2.5) \begin{aligned} \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) =(\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \tag{1.2.5} \end{aligned} ψ k 1 , k 2 ( r 1 , r 2 ) = ( V 1 e i k 1 ⋅ r 1 ) ⊗ ( V 1 e i k 2 ⋅ r 2 ) ( 1 . 2 . 5 )
用直积符号的话,将哈密顿算符作用再波函数上,其实就想是张量积的指标缩并:指标 1 与指标 1 作用,指标 2 与指标 2 作用(也就是坐标 1 有关的与坐标 1 作用,坐标 2 有关的与坐标 2 作用),如下:
H ^ 2 ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 1 , r ⃗ 2 ) = ( [ ( − ℏ 2 2 m ∇ r ⃗ 1 2 ) ⊗ I ^ 2 ] + [ I ^ 1 ⊗ ( − ℏ 2 2 m ∇ r ⃗ 2 2 ) ] ) [ ( 1 V e i k ⃗ 1 ⋅ r ⃗ 1 ) ⊗ ( 1 V e i k ⃗ 2 ⋅ r ⃗ 2 ) ] = [ ( − ℏ 2 2 m ∇ r ⃗ 1 2 ) ( 1 V e i k ⃗ 1 ⋅ r ⃗ 1 ) ] ⊗ [ I ^ 2 ( 1 V e i k ⃗ 2 ⋅ r ⃗ 2 ) ] + [ I ^ 1 ( 1 V e i k ⃗ 1 ⋅ r ⃗ 1 ) ] ⊗ [ ( − ℏ 2 2 m ∇ r ⃗ 2 2 ) ( 1 V e i k ⃗ 2 ⋅ r ⃗ 2 ) ] = ℏ 2 k 1 2 2 m ( 1 V e i k ⃗ 1 ⋅ r ⃗ 1 ) ⊗ ( 1 V e i k ⃗ 2 ⋅ r ⃗ 2 ) + ℏ 2 k 2 2 2 m ( 1 V e i k ⃗ 1 ⋅ r ⃗ 1 ) ⊗ ( 1 V e i k ⃗ 2 ⋅ r ⃗ 2 ) = ( ℏ 2 k 1 2 2 m + ℏ 2 k 2 2 2 m ) ( 1 V e i k ⃗ 1 ⋅ r ⃗ 1 ) ⊗ ( 1 V e i k ⃗ 2 ⋅ r ⃗ 2 ) = ( ℏ 2 k 1 2 2 m + ℏ 2 k 2 2 2 m ) ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 1 , r ⃗ 2 ) (1.2.6) \begin{aligned} &\qquad\hat{H}_2 \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) \\&=\Bigg( \bigg[ (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_1}) \otimes \hat{I}_2 \bigg]+ \bigg[\hat{I}_1 \otimes (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_2}) \bigg] \Bigg) \bigg[(\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \bigg] \\&=\bigg[ (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_1}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) \bigg] \otimes \bigg[ \hat{I}_2 (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \bigg] + \bigg[\hat{I}_1(\frac{1}{\sqrt{V}}e^{i\vec{k}_1 \cdot \vec{r}_1}) \bigg] \otimes \bigg[ (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_2}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \bigg] \\&=\frac{\hbar^2 k_1^2}{2m} (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) + \frac{\hbar^2 k_2^2}{2m} (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \\&=(\frac{\hbar^2 k_1^2}{2m}+\frac{\hbar^2 k_2^2}{2m}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_2}) \\&=(\frac{\hbar^2 k_1^2}{2m}+\frac{\hbar^2 k_2^2}{2m}) \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) \tag{1.2.6} \end{aligned} H ^ 2 ψ k 1 , k 2 ( r 1 , r 2 ) = ( [ ( − 2 m ℏ 2 ∇ r 1 2 ) ⊗ I ^ 2 ] + [ I ^ 1 ⊗ ( − 2 m ℏ 2 ∇ r 2 2 ) ] ) [ ( V 1 e i k 1 ⋅ r 1 ) ⊗ ( V 1 e i k 2 ⋅ r 2 ) ] = [ ( − 2 m ℏ 2 ∇ r 1 2 ) ( V 1 e i k 1 ⋅ r 1 ) ] ⊗ [ I ^ 2 ( V 1 e i k 2 ⋅ r 2 ) ] + [ I ^ 1 ( V 1 e i k 1 ⋅ r 1 ) ] ⊗ [ ( − 2 m ℏ 2 ∇ r 2 2 ) ( V 1 e i k 2 ⋅ r 2 ) ] = 2 m ℏ 2 k 1 2 ( V 1 e i k 1 ⋅ r 1 ) ⊗ ( V 1 e i k 2 ⋅ r 2 ) + 2 m ℏ 2 k 2 2 ( V 1 e i k 1 ⋅ r 1 ) ⊗ ( V 1 e i k 2 ⋅ r 2 ) = ( 2 m ℏ 2 k 1 2 + 2 m ℏ 2 k 2 2 ) ( V 1 e i k 1 ⋅ r 1 ) ⊗ ( V 1 e i k 2 ⋅ r 2 ) = ( 2 m ℏ 2 k 1 2 + 2 m ℏ 2 k 2 2 ) ψ k 1 , k 2 ( r 1 , r 2 ) ( 1 . 2 . 6 )
这才是正确的理解方法 —— 用直积 (一种张量积) 去理解。\quad 好,现在让我们回到两个全同粒子体系问题,除了ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 1 , r ⃗ 2 ) \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) ψ k 1 , k 2 ( r 1 , r 2 ) 是哈密顿算符的本征值外,我们也不难发现ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 2 , r ⃗ 1 ) \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_2,\vec{r}_1) ψ k 1 , k 2 ( r 2 , r 1 ) 也是哈密顿算符的本征值 (下式可以注意一个问题,调换直积前后两个的顺序是没影响的,主要还是看它的 “下指标”):
H ^ 2 ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 2 , r ⃗ 1 ) = ( [ ( − ℏ 2 2 m ∇ r ⃗ 1 2 ) ⊗ I ^ 2 ] + [ I ^ 1 ⊗ ( − ℏ 2 2 m ∇ r ⃗ 2 2 ) ] ) [ ( 1 V e i k ⃗ 2 ⋅ r ⃗ 1 ) ⊗ ( 1 V e i k ⃗ 1 ⋅ r ⃗ 2 ) ] = [ ( − ℏ 2 2 m ∇ r ⃗ 1 2 ) ( 1 V e i k ⃗ 2 ⋅ r ⃗ 1 ) ] ⊗ [ I ^ 2 ( 1 V e i k ⃗ 1 ⋅ r ⃗ 2 ) ] + [ I ^ 1 ( 1 V e i k ⃗ 2 ⋅ r ⃗ 1 ) ] ⊗ [ ( − ℏ 2 2 m ∇ r ⃗ 2 2 ) ( 1 V e i k ⃗ 1 ⋅ r ⃗ 2 ) ] = ℏ 2 k 2 2 2 m ( 1 V e i k ⃗ 2 ⋅ r ⃗ 1 ) ⊗ ( 1 V e i k ⃗ 1 ⋅ r ⃗ 2 ) + ℏ 2 k 1 2 2 m ( 1 V e i k ⃗ 2 ⋅ r ⃗ 1 ) ⊗ ( 1 V e i k ⃗ 1 ⋅ r ⃗ 2 ) = ( ℏ 2 k 1 2 2 m + ℏ 2 k 2 2 2 m ) ( 1 V e i k ⃗ 2 ⋅ r ⃗ 1 ) ⊗ ( 1 V e i k ⃗ 1 ⋅ r ⃗ 2 ) = ( ℏ 2 k 1 2 2 m + ℏ 2 k 2 2 2 m ) ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 2 , r ⃗ 1 ) (1.2.7) \begin{aligned} &\qquad\hat{H}_2 \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_2,\vec{r}_1) \\&=\Bigg( \bigg[ (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_1}) \otimes \hat{I}_2 \bigg]+ \bigg[\hat{I}_1 \otimes (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_2}) \bigg] \Bigg) \bigg[(\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_2}) \bigg] \\&=\bigg[ (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_1}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_1}) \bigg] \otimes \bigg[ \hat{I}_2 (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_2}) \bigg] + \bigg[\hat{I}_1(\frac{1}{\sqrt{V}}e^{i\vec{k}_2 \cdot \vec{r}_1}) \bigg] \otimes \bigg[ (-\frac{\hbar^2}{2m}\nabla^2_{\vec{r}_2}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_2}) \bigg] \\&=\frac{\hbar^2 k_2^2}{2m} (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_2}) + \frac{\hbar^2 k_1^2}{2m} (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_2}) \\&=(\frac{\hbar^2 k_1^2}{2m}+\frac{\hbar^2 k_2^2}{2m}) (\frac{1}{\sqrt{V}} e^{i \vec{k}_2 \cdot \vec{r}_1}) \otimes (\frac{1}{\sqrt{V}} e^{i \vec{k}_1 \cdot \vec{r}_2}) \\&=(\frac{\hbar^2 k_1^2}{2m}+\frac{\hbar^2 k_2^2}{2m}) \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_2,\vec{r}_1) \tag{1.2.7} \end{aligned} H ^ 2 ψ k 1 , k 2 ( r 2 , r 1 ) = ( [ ( − 2 m ℏ 2 ∇ r 1 2 ) ⊗ I ^ 2 ] + [ I ^ 1 ⊗ ( − 2 m ℏ 2 ∇ r 2 2 ) ] ) [ ( V 1 e i k 2 ⋅ r 1 ) ⊗ ( V 1 e i k 1 ⋅ r 2 ) ] = [ ( − 2 m ℏ 2 ∇ r 1 2 ) ( V 1 e i k 2 ⋅ r 1 ) ] ⊗ [ I ^ 2 ( V 1 e i k 1 ⋅ r 2 ) ] + [ I ^ 1 ( V 1 e i k 2 ⋅ r 1 ) ] ⊗ [ ( − 2 m ℏ 2 ∇ r 2 2 ) ( V 1 e i k 1 ⋅ r 2 ) ] = 2 m ℏ 2 k 2 2 ( V 1 e i k 2 ⋅ r 1 ) ⊗ ( V 1 e i k 1 ⋅ r 2 ) + 2 m ℏ 2 k 1 2 ( V 1 e i k 2 ⋅ r 1 ) ⊗ ( V 1 e i k 1 ⋅ r 2 ) = ( 2 m ℏ 2 k 1 2 + 2 m ℏ 2 k 2 2 ) ( V 1 e i k 2 ⋅ r 1 ) ⊗ ( V 1 e i k 1 ⋅ r 2 ) = ( 2 m ℏ 2 k 1 2 + 2 m ℏ 2 k 2 2 ) ψ k 1 , k 2 ( r 2 , r 1 ) ( 1 . 2 . 7 )
由此我们知道ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 1 , r ⃗ 2 ) \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) ψ k 1 , k 2 ( r 1 , r 2 ) 和ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 2 , r ⃗ 1 ) \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_2,\vec{r}_1) ψ k 1 , k 2 ( r 2 , r 1 ) 是能量本征值相等的两个(非相关)的本质函数。这说明全同多粒子体系的能量是简并的!但无论是ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 1 , r ⃗ 2 ) \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2) ψ k 1 , k 2 ( r 1 , r 2 ) 还是ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 2 , r ⃗ 1 ) \psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_2,\vec{r}_1) ψ k 1 , k 2 ( r 2 , r 1 ) 都不满足玻色子或费米子的统计规律(调换次序要么对称要么反对称)。但也没关系,它俩不满足,只有将它们的线性组合满足这个关系就好了:\quad 对于玻色子:
ψ k ⃗ 1 , k ⃗ 2 S ( r ⃗ 1 , r ⃗ 2 ) = 1 2 [ ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 1 , r ⃗ 2 ) + ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 2 , r ⃗ 1 ) ] (1.2.8) \psi^S_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2)=\frac{1}{\sqrt{2}}[\psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2)+\psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_2,\vec{r}_1)] \tag{1.2.8} ψ k 1 , k 2 S ( r 1 , r 2 ) = 2 1 [ ψ k 1 , k 2 ( r 1 , r 2 ) + ψ k 1 , k 2 ( r 2 , r 1 ) ] ( 1 . 2 . 8 )
\quad 对于费米子:
ψ k ⃗ 1 , k ⃗ 2 A ( r ⃗ 1 , r ⃗ 2 ) = 1 2 [ ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 1 , r ⃗ 2 ) − ψ k ⃗ 1 , k ⃗ 2 ( r ⃗ 2 , r ⃗ 1 ) ] (1.2.9) \psi^A_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2)=\frac{1}{\sqrt{2}}[\psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_1,\vec{r}_2)-\psi_{\vec{k}_1,\vec{k}_2}(\vec{r}_2,\vec{r}_1)] \tag{1.2.9} ψ k 1 , k 2 A ( r 1 , r 2 ) = 2 1 [ ψ k 1 , k 2 ( r 1 , r 2 ) − ψ k 1 , k 2 ( r 2 , r 1 ) ] ( 1 . 2 . 9 )
上两式中的1 2 \frac{1}{\sqrt{2}} 2 1 是归一化因子。
# 三个全同玻色子组成的体系\quad 在这一小节,我们将讨论一下三个全同玻色子组成的体系。讨论这一小节的目的是为了给下一小节推广到 N 个全同粒子体系做铺垫。如果再后面的 N 个全同粒子体系中有内容看不懂的话,可以回过头来看看作为特例的这一小节。
\quad 假设有三个全同玻色子,而且体系中有且只存在两个态k 1 k_1 k 1 和k 2 k_2 k 2 。假若有两个粒子是k 1 k_1 k 1 态,另一个粒子是k 2 k_2 k 2 态,把粒子交换遍历一遍,可以有3 ! = 6 3!=6 3 ! = 6 种波函数:
φ k 1 ( q 1 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 3 ) ; φ k 1 ( q 1 ) ⊗ φ k 1 ( q 3 ) ⊗ φ k 2 ( q 2 ) φ k 1 ( q 2 ) ⊗ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 3 ) ; φ k 1 ( q 2 ) ⊗ φ k 1 ( q 3 ) ⊗ φ k 2 ( q 1 ) φ k 1 ( q 3 ) ⊗ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ; φ k 1 ( q 3 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 1 ) \begin{aligned} &\varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_3) \quad;\quad \varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_3)\otimes\varphi_{k_2}(q_2) \\ &\varphi_{k_1}(q_2)\otimes\varphi_{k_1}\ (q_1)\otimes\varphi_{k_2}(q_3) \quad;\quad \varphi_{k_1}(q_2)\otimes\varphi_{k_1}\ (q_3)\otimes\varphi_{k_2}(q_1) \\ &\varphi_{k_1}(q_3)\otimes\varphi_{k_1}\ (q_1)\otimes\varphi_{k_2}(q_2) \quad;\quad \varphi_{k_1}(q_3)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_1) \end{aligned} φ k 1 ( q 1 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 3 ) ; φ k 1 ( q 1 ) ⊗ φ k 1 ( q 3 ) ⊗ φ k 2 ( q 2 ) φ k 1 ( q 2 ) ⊗ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 3 ) ; φ k 1 ( q 2 ) ⊗ φ k 1 ( q 3 ) ⊗ φ k 2 ( q 1 ) φ k 1 ( q 3 ) ⊗ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ; φ k 1 ( q 3 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 1 )
但由于上面六种都有不符合玻色子的统计规律,因此要把这六个波函数线性组合,使其得到新的波函数满足交换粒子的对称性:
φ 2 k 1 , k 2 ( q 1 , q 2 , q 3 ) = D 1 [ φ k 1 ( q 1 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 3 ) + φ k 1 ( q 1 ) ⊗ φ k 1 ( q 3 ) ⊗ φ k 2 ( q 2 ) + φ k 1 ( q 2 ) ⊗ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 3 ) + φ k 1 ( q 2 ) ⊗ φ k 1 ( q 3 ) ⊗ φ k 2 ( q 1 ) + φ k 1 ( q 3 ) ⊗ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) + φ k 1 ( q 3 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 1 ) ] = D ~ 1 [ φ k 1 ( q 1 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 3 ) + φ k 1 ( q 1 ) ⊗ φ k 1 ( q 3 ) ⊗ φ k 2 ( q 2 ) + φ k 1 ( q 2 ) ⊗ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 3 ) ] (1.3.1) \begin{aligned} \varphi_{2k_1,k_2}(q_1,q_2,q_3)&=D_1\big[ \varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_3)+ \varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_3)\otimes\varphi_{k_2}(q_2)+ \\&\qquad\quad\varphi_{k_1}(q_2)\otimes\varphi_{k_1}\ (q_1)\otimes\varphi_{k_2}(q_3)+ \varphi_{k_1}(q_2)\otimes\varphi_{k_1}\ (q_3)\otimes\varphi_{k_2}(q_1)+ \\&\qquad\quad\varphi_{k_1}(q_3)\otimes\varphi_{k_1}\ (q_1)\otimes\varphi_{k_2}(q_2)+ \varphi_{k_1}(q_3)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_1)\big] \\&=\tilde{D}_1\big[\varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_3)+ \varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_3)\otimes\varphi_{k_2}(q_2)+ \\&\qquad\quad\varphi_{k_1}(q_2)\otimes\varphi_{k_1}\ (q_1)\otimes\varphi_{k_2}(q_3)\big] \tag{1.3.1} \end{aligned} φ 2 k 1 , k 2 ( q 1 , q 2 , q 3 ) = D 1 [ φ k 1 ( q 1 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 3 ) + φ k 1 ( q 1 ) ⊗ φ k 1 ( q 3 ) ⊗ φ k 2 ( q 2 ) + φ k 1 ( q 2 ) ⊗ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 3 ) + φ k 1 ( q 2 ) ⊗ φ k 1 ( q 3 ) ⊗ φ k 2 ( q 1 ) + φ k 1 ( q 3 ) ⊗ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) + φ k 1 ( q 3 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 1 ) ] = D ~ 1 [ φ k 1 ( q 1 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 3 ) + φ k 1 ( q 1 ) ⊗ φ k 1 ( q 3 ) ⊗ φ k 2 ( q 2 ) + φ k 1 ( q 2 ) ⊗ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 3 ) ] ( 1 . 3 . 1 )
其中D 1 D_1 D 1 和D ~ 1 \tilde{D}_1 D ~ 1 分别为全部展开式和合并同类项后的展开式的归一化常数。值得注意的是:似乎合并同类项后,每一项的权重是一样的。虽然我也不知道怎么证明, , Ծ‸Ծ , , ,,Ծ‸Ծ,, , , Ծ ‸ Ծ , , \quad 同理,假若是有两个粒子是k 2 k_2 k 2 态,另一个粒子是k 1 k_1 k 1 态,我们有:
φ k 1 , 2 k 2 ( q 1 , q 2 , q 3 ) = D ~ 2 [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ φ k 2 ( q 3 ) + φ k 1 ( q 1 ) ⊗ φ k 2 ( q 3 ) ⊗ φ k 2 ( q 2 ) + φ k 1 ( q 2 ) ⊗ φ k 2 ( q 1 ) ⊗ φ k 2 ( q 3 ) ] (1.3.2) \begin{aligned} \varphi_{k_1,2k_2}(q_1,q_2,q_3)=\tilde{D}_2\big[& \varphi_{k_1}(q_1)\otimes\varphi_{k_2}\ (q_2)\otimes\varphi_{k_2}(q_3)+ \varphi_{k_1}(q_1)\otimes\varphi_{k_2}\ (q_3)\otimes\varphi_{k_2}(q_2)+ \\& \varphi_{k_1}(q_2)\otimes\varphi_{k_2}\ (q_1)\otimes\varphi_{k_2}(q_3)\big] \tag{1.3.2} \end{aligned} φ k 1 , 2 k 2 ( q 1 , q 2 , q 3 ) = D ~ 2 [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ φ k 2 ( q 3 ) + φ k 1 ( q 1 ) ⊗ φ k 2 ( q 3 ) ⊗ φ k 2 ( q 2 ) + φ k 1 ( q 2 ) ⊗ φ k 2 ( q 1 ) ⊗ φ k 2 ( q 3 ) ] ( 1 . 3 . 2 )
\quad 下面,我们要做三件事:一是验证φ 2 k 1 , k 2 ( q 1 , q 2 , q 3 ) \varphi_{2k_1,k_2}(q_1,q_2,q_3) φ 2 k 1 , k 2 ( q 1 , q 2 , q 3 ) 和φ k 1 , 2 k 2 ( q 1 , q 2 , q 3 ) \varphi_{k_1,2k_2}(q_1,q_2,q_3) φ k 1 , 2 k 2 ( q 1 , q 2 , q 3 ) 这两个函数任意对换其中一对坐标,函数值是不改变的;二是,由于( 2 k 1 , k 2 ) ≠ ( k 1 , 2 k 2 ) (2k_1,k_2)\ne(k_1,2k_2) ( 2 k 1 , k 2 ) = ( k 1 , 2 k 2 ) , 因此我们可以证明φ 2 k 1 , k 2 ( q 1 , q 2 , q 3 ) \varphi_{2k_1,k_2}(q_1,q_2,q_3) φ 2 k 1 , k 2 ( q 1 , q 2 , q 3 ) 和φ k 1 , 2 k 2 ( q 1 , q 2 , q 3 ) \varphi_{k_1,2k_2}(q_1,q_2,q_3) φ k 1 , 2 k 2 ( q 1 , q 2 , q 3 ) 是正交的;三是找到它们的归一化因子D ~ 1 \tilde{D}_1 D ~ 1 和D ~ 2 \tilde{D}_2 D ~ 2 。\quad 首先,不难验证φ 2 k 1 , k 2 ( q 1 , q 2 , q 3 ) \varphi_{2k_1,k_2}(q_1,q_2,q_3) φ 2 k 1 , k 2 ( q 1 , q 2 , q 3 ) 和φ k 1 , 2 k 2 ( q 1 , q 2 , q 3 ) \varphi_{k_1,2k_2}(q_1,q_2,q_3) φ k 1 , 2 k 2 ( q 1 , q 2 , q 3 ) 任意对换其中一对坐标,函数值是不改变的。不信你自己可以随便试试 |・'-'・) ✧ \quad 其次,关于这两个函数正交,我们有:
∫ d q 1 d q 2 d q 3 φ k 1 , 2 k 2 ∗ φ 2 k 1 , k 2 = ∫ d q 1 d q 2 d q 3 D ~ 1 D ~ 2 ∗ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ φ k 2 ( q 3 ) + φ k 1 ( q 1 ) ⊗ φ k 2 ( q 3 ) ⊗ φ k 2 ( q 2 ) + φ k 1 ( q 2 ) ⊗ φ k 2 ( q 1 ) ⊗ φ k 2 ( q 3 ) ] ∗ [ φ k 1 ( q 1 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 3 ) + φ k 1 ( q 1 ) ⊗ φ k 1 ( q 3 ) ⊗ φ k 2 ( q 2 ) + φ k 1 ( q 2 ) ⊗ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 3 ) ] (1.3.3) \begin{aligned} \int dq_1dq_2dq_3 \varphi_{k_1,2k_2}^* \varphi_{2k_1,k_2} =\int dq_1dq_2dq_3 \tilde{D}_1\tilde{D}_2^* \big[& \varphi_{k_1}(q_1)\otimes\varphi_{k_2}\ (q_2)\otimes\varphi_{k_2}(q_3)+ \varphi_{k_1}(q_1)\otimes\varphi_{k_2}\ (q_3)\otimes\varphi_{k_2}(q_2)+ \\& \varphi_{k_1}(q_2)\otimes\varphi_{k_2}\ (q_1)\otimes\varphi_{k_2}(q_3)\big]^* \big[\varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_3)+ \\& \varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_3)\otimes\varphi_{k_2}(q_2)+ \varphi_{k_1}(q_2)\otimes\varphi_{k_1}\ (q_1)\otimes\varphi_{k_2}(q_3)\big] \tag{1.3.3} \end{aligned} ∫ d q 1 d q 2 d q 3 φ k 1 , 2 k 2 ∗ φ 2 k 1 , k 2 = ∫ d q 1 d q 2 d q 3 D ~ 1 D ~ 2 ∗ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ φ k 2 ( q 3 ) + φ k 1 ( q 1 ) ⊗ φ k 2 ( q 3 ) ⊗ φ k 2 ( q 2 ) + φ k 1 ( q 2 ) ⊗ φ k 2 ( q 1 ) ⊗ φ k 2 ( q 3 ) ] ∗ [ φ k 1 ( q 1 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 3 ) + φ k 1 ( q 1 ) ⊗ φ k 1 ( q 3 ) ⊗ φ k 2 ( q 2 ) + φ k 1 ( q 2 ) ⊗ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 3 ) ] ( 1 . 3 . 3 )
上式乘开后,一共有九项。我们取其中一项来看:
∫ d q 1 d q 2 d q 3 [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ φ k 2 ( q 3 ) ] ∗ [ φ k 1 ( q 1 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 3 ) ] = ⟨ φ k 1 ( q 1 ) ∣ φ k 1 ( q 1 ) ⟩ ⊗ ⟨ φ k 2 ( q 2 ) ∣ φ k 1 ( q 2 ) ⟩ ⊗ ⟨ φ k 2 ( q 3 ) ∣ φ k 2 ( q 3 ) ⟩ = 1 ⊗ 0 ⊗ 1 = 1 × 0 × 1 = 0 (1.3.4) \begin{aligned} &\quad\int dq_1dq_2dq_3 \big[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}\ (q_2)\otimes\varphi_{k_2}(q_3)\big]^* \big[\varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_3)\big] \\&= \braket{\varphi_{k_1}(q_1)|\varphi_{k_1}(q_1)} \otimes \braket{\varphi_{k_2}(q_2)|\varphi_{k_1}(q_2)} \otimes \braket{\varphi_{k_2}(q_3)|\varphi_{k_2}(q_3)} \\&= 1 \otimes0 \otimes 1=1\times0\times1=0 \tag{1.3.4} \end{aligned} ∫ d q 1 d q 2 d q 3 [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ φ k 2 ( q 3 ) ] ∗ [ φ k 1 ( q 1 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 3 ) ] = ⟨ φ k 1 ( q 1 ) ∣ φ k 1 ( q 1 ) ⟩ ⊗ ⟨ φ k 2 ( q 2 ) ∣ φ k 1 ( q 2 ) ⟩ ⊗ ⟨ φ k 2 ( q 3 ) ∣ φ k 2 ( q 3 ) ⟩ = 1 ⊗ 0 ⊗ 1 = 1 × 0 × 1 = 0 ( 1 . 3 . 4 )
在上式的最后一步中,我们应该注意到标量的直积,或者说标量的张量积其实就是普通乘积。其余的 8 项,也可以这样计算,结果都为零,因此 (1.3.3) 式的最终结果为零,它两正交。\quad 最后,我们来计算归一化常数D ~ 1 \tilde{D}_1 D ~ 1 和D ~ 2 \tilde{D}_2 D ~ 2 , 由归一化条件得:
1 = ∫ d q 1 d q 2 d q 3 φ 2 k 1 , k 2 ∗ φ 2 k 1 , k 2 = ∫ d q 1 d q 2 d q 3 D ~ 1 ∗ D ~ 1 [ φ k 1 ( q 1 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 3 ) + φ k 1 ( q 1 ) ⊗ φ k 1 ( q 3 ) ⊗ φ k 2 ( q 2 ) + φ k 1 ( q 2 ) ⊗ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 3 ) ] ∗ [ φ k 1 ( q 1 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 3 ) + φ k 1 ( q 1 ) ⊗ φ k 1 ( q 3 ) ⊗ φ k 2 ( q 2 ) + φ k 1 ( q 2 ) ⊗ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 3 ) ] (1.3.5) \begin{aligned} 1 = \int dq_1dq_2dq_3 \varphi_{2k_1,k_2}^* \varphi_{2k_1,k_2} \\ =\int dq_1dq_2dq_3 \tilde{D}_1^*\tilde{D}_1 \big[& \varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_3)+ \varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_3)\otimes\varphi_{k_2}(q_2)+ \\& \varphi_{k_1}(q_2)\otimes\varphi_{k_1}\ (q_1)\otimes\varphi_{k_2}(q_3)\big]^* \big[\varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_2)\otimes\varphi_{k_2}(q_3)+ \\& \varphi_{k_1}(q_1)\otimes\varphi_{k_1}\ (q_3)\otimes\varphi_{k_2}(q_2)+ \varphi_{k_1}(q_2)\otimes\varphi_{k_1}\ (q_1)\otimes\varphi_{k_2}(q_3)\big] \tag{1.3.5} \end{aligned} 1 = ∫ d q 1 d q 2 d q 3 φ 2 k 1 , k 2 ∗ φ 2 k 1 , k 2 = ∫ d q 1 d q 2 d q 3 D ~ 1 ∗ D ~ 1 [ φ k 1 ( q 1 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 3 ) + φ k 1 ( q 1 ) ⊗ φ k 1 ( q 3 ) ⊗ φ k 2 ( q 2 ) + φ k 1 ( q 2 ) ⊗ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 3 ) ] ∗ [ φ k 1 ( q 1 ) ⊗ φ k 1 ( q 2 ) ⊗ φ k 2 ( q 3 ) + φ k 1 ( q 1 ) ⊗ φ k 1 ( q 3 ) ⊗ φ k 2 ( q 2 ) + φ k 1 ( q 2 ) ⊗ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 3 ) ] ( 1 . 3 . 5 )
如果你计算了上式中的九项,就会发现每一项仅与自身内积为 1,而与其他项的内积为零,即使推广到了 N 个粒子,这也是一个普遍的规律。事实上,我们在下面推广到 N 全同粒子体系时,也会利用到这一点来计算它们的归一个常数 。因此,上式为:
1 = ∫ d q 1 d q 2 d q 3 φ 2 k 1 , k 2 ∗ φ 2 k 1 , k 2 = 3 ∣ D ~ 1 ∣ 2 (1.3.6) \begin{aligned} 1=\int dq_1dq_2dq_3 \varphi_{2k_1,k_2}^* \varphi_{2k_1,k_2}=3|\tilde{D}_1|^2 \tag{1.3.6} \end{aligned} 1 = ∫ d q 1 d q 2 d q 3 φ 2 k 1 , k 2 ∗ φ 2 k 1 , k 2 = 3 ∣ D ~ 1 ∣ 2 ( 1 . 3 . 6 )
由此我们得到D ~ 1 = 1 3 \tilde{D}_1=\frac{1}{\sqrt{3}} D ~ 1 = 3 1 。同理D ~ 2 = 1 3 \tilde{D}_2=\frac{1}{\sqrt{3}} D ~ 2 = 3 1 。
# N 个全同粒子体系# 几个知识点\quad 在这一节展开讨论 N 个全同粒子体系之前,有几个关于排列组合,以及群论的知识需要了解。
知识点① :假若有 N 个小球(有编号的)要放入 M 个碗里,并要求第一个碗有n 1 n_1 n 1 个小球,第二个碗有n 2 n_2 n 2 个 \cdots\cdots 有些碗的小球个数n s n_s n s 可以为零,但要保证n 1 + n 2 + ⋯ + n M = N n_1+n_2+\cdots+n_M=N n 1 + n 2 + ⋯ + n M = N 。那么一共有D ~ \tilde{D} D ~ 种放法:D ~ = N ! n 1 ! n 2 ! ⋯ n M ! (1.4.1) \tilde{D}=\frac{N!}{n_1!n_2!\cdots n_M!} \tag{1.4.1} D ~ = n 1 ! n 2 ! ⋯ n M ! N ! ( 1 . 4 . 1 )
这不难理解:首先将 N 个球排列就有了 N! 种,但同一个碗里的排列要消除掉,所以会除以n 1 ! n 2 ! ⋯ n M ! n_1!n_2!\cdots n_M! n 1 ! n 2 ! ⋯ n M ! 。这是一个很简单的高中知识。
知识点② :将元素( 1 , 2 , 3 , ⋯ , N ) (1,2,3,\cdots,N) ( 1 , 2 , 3 , ⋯ , N ) 的任意一个重新排列称为一个置换 ,用一个2 × N 2\times N 2 × N 的矩阵来描述:P ^ = ( 1 2 ⋯ N P ( 1 ) P ( 2 ) ⋯ P ( N ) ) (1.4.2) \hat{P}= \left( \begin{matrix} 1 & 2 & \cdots & N \\ P(1) & P(2) & \cdots & P(N) \end{matrix} \right) \tag{1.4.2} P ^ = ( 1 P ( 1 ) 2 P ( 2 ) ⋯ ⋯ N P ( N ) ) ( 1 . 4 . 2 )
例如,在置换
P ^ = ( 1 2 3 N 4 1 2 3 ) (1.4.3) \hat{P}= \left( \begin{matrix} 1 & 2 & 3& N \\ 4 & 1 & 2 & 3 \end{matrix} \right) \tag{1.4.3} P ^ = ( 1 4 2 1 3 2 N 3 ) ( 1 . 4 . 3 )
种,P ( 1 ) = 4 , P ( 2 ) = 1 , P ( 3 ) = 2 , P ( 4 ) = 3 P(1)=4 , P(2)=1 , P(3)=2 , P(4)=3 P ( 1 ) = 4 , P ( 2 ) = 1 , P ( 3 ) = 2 , P ( 4 ) = 3 。显然全部置换的总数等于 N!。
P ^ 1 P ^ 2 = ( 1 2 ⋯ N P 1 ( 1 ) P 1 ( 2 ) ⋯ P 1 ( N ) ) ( 1 2 ⋯ N P 2 ( 1 ) P 2 ( 2 ) ⋯ P 2 ( N ) ) = ( 1 2 ⋯ N P 3 ( 1 ) P 3 ( 2 ) ⋯ P 3 ( N ) ) (1.4.4) \begin{aligned} \hat{P}_1\hat{P}_2&= \left( \begin{matrix} 1 & 2 & \cdots & N \\ P_1(1) & P_1(2) & \cdots & P_1(N) \end{matrix} \right) \left( \begin{matrix} 1 & 2 & \cdots & N \\ P_2(1) & P_2(2) & \cdots & P_2(N) \end{matrix} \right) \\&= \left( \begin{matrix} 1 & 2 & \cdots & N \\ P_3(1) & P_3(2) & \cdots & P_3(N) \end{matrix} \right) \end{aligned} \tag{1.4.4} P ^ 1 P ^ 2 = ( 1 P 1 ( 1 ) 2 P 1 ( 2 ) ⋯ ⋯ N P 1 ( N ) ) ( 1 P 2 ( 1 ) 2 P 2 ( 2 ) ⋯ ⋯ N P 2 ( N ) ) = ( 1 P 3 ( 1 ) 2 P 3 ( 2 ) ⋯ ⋯ N P 3 ( N ) ) ( 1 . 4 . 4 )
例如:
( 1 2 3 4 5 4 5 2 1 3 ) ( 1 2 3 4 5 3 1 5 2 4 ) = ( 1 2 3 4 5 2 4 3 5 1 ) (1.4.5) \begin{aligned} \left( \begin{matrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{matrix} \right) \left( \begin{matrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{matrix} \right) =\left( \begin{matrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{matrix} \right) \tag{1.4.5} \end{aligned} ( 1 4 2 5 3 2 4 1 5 3 ) ( 1 3 2 1 3 5 4 2 5 4 ) = ( 1 2 2 4 3 3 4 5 5 1 ) ( 1 . 4 . 5 )
上式可以这样理解,坐标这个置换算符的作用是先将 “1” 换到 “3”,再将 “3” 换到 “2”,也就等效于右边算符把 “1” 直接换到 “2”。其他也以此类推。
知识点④ :若一个置换仅仅只是交换两个元素,那么就称为是对换 ,记作:( i , j ) = ( 1 2 ⋯ i j ⋯ N 1 2 ⋯ j i ⋯ N ) (1.4.6) (i,j)= \left( \begin{matrix} 1 & 2 & \cdots & i & j \cdots & N \\ 1 & 2 & \cdots & j & i \cdots & N \end{matrix} \right) \tag{1.4.6} ( i , j ) = ( 1 1 2 2 ⋯ ⋯ i j j ⋯ i ⋯ N N ) ( 1 . 4 . 6 )
可以说对换是一种特殊的置换。
知识点⑤ :我们可以证明 (但这里就不打算给证明了๐・ᴗ・๐) , 任何一个置换都可以写成多个对换的乘积,例如:( 1 2 3 4 3 2 4 1 ) = ( 3 , 4 ) ( 2 , 3 ) ( 3 , 4 ) ( 1 , 2 ) ( 3 , 4 ) ( 2.3 ) ( 3 , 4 ) ( 2 , 3 ) ( 1 , 2 ) ( 2 , 3 ) = ( 1 2 3 4 4 2 1 3 ) ( 1 2 3 4 4 2 1 3 ) (1.4.7) \begin{aligned} \left( \begin{matrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{matrix} \right) &=(3,4)(2,3)(3,4)(1,2)(3,4)(2.3)(3,4)(2,3)(1,2)(2,3) \\&= \left( \begin{matrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{matrix} \right) \left( \begin{matrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{matrix} \right) \end{aligned} \tag{1.4.7} ( 1 3 2 2 3 4 4 1 ) = ( 3 , 4 ) ( 2 , 3 ) ( 3 , 4 ) ( 1 , 2 ) ( 3 , 4 ) ( 2 . 3 ) ( 3 , 4 ) ( 2 , 3 ) ( 1 , 2 ) ( 2 , 3 ) = ( 1 4 2 2 3 1 4 3 ) ( 1 4 2 2 3 1 4 3 ) ( 1 . 4 . 7 )
由上式可以看到,一般而言,分解不是唯一的。但是,任意一个置换的分解出来的对换个数的奇偶性是唯一的,确定的!
知识点⑥ :若置换分解出来的对换个数是奇数,我们则称这个置换为奇置换;若置换分解出来的对换个数是偶数,我们则称这个置换为偶置换。且我们对于一个置换P ^ \hat{P} P ^ 可定义一个值δ ( P ^ ) \delta(\hat{P}) δ ( P ^ ) ,称作它的置换宇称:δ ( P ^ ) = { + 1 , 当 P ^ 为偶置换时 − 1 , 当 P ^ 为奇置换时 (1.4.8) \delta(\hat{P})= \begin{cases} +1, &\text{当} \hat{P} \text{为偶置换时} \\ -1,&\text{当} \hat{P} \text{为奇置换时} \end{cases} \tag{1.4.8} δ ( P ^ ) = { + 1 , − 1 , 当 P ^ 为偶置换时 当 P ^ 为奇置换时 ( 1 . 4 . 8 )
在下面我们会用到这样的式子,即一个对换为P ^ i j = ( i . j ) \hat{P}_{ij}=(i.j) P ^ i j = ( i . j ) ,则有:
δ ( P ^ P ^ i j ) = { − 1 , 当 P ^ 为偶置换时 + 1 , 当 P ^ 为奇置换时 = − δ ( P ^ ) (1.4.9) \delta(\hat{P}\hat{P}_{ij})= \begin{cases} -1, &\text{当} \hat{P} \text{为偶置换时} \\ +1,&\text{当} \hat{P} \text{为奇置换时} \end{cases} =-\delta(\hat{P}) \tag{1.4.9} δ ( P ^ P ^ i j ) = { − 1 , + 1 , 当 P ^ 为偶置换时 当 P ^ 为奇置换时 = − δ ( P ^ ) ( 1 . 4 . 9 )
这是可以理解的,因为当一个置换乘上一个对换,得到新的一个置换,这个新置换分解出来的对换个数就刚好比原置换多一个,因此新置换和原置换的奇偶性刚好相反。
知识点⑦ :由知识点②可知,N 个元素一个有 N! 种置换,这 N! 种置换构成了一个置换群{ P ^ } \{\hat{P}\} { P ^ } 。有这样的一个置换群定理:当用一个固定的置换取乘这 N! 个置换时,乘积的结果刚好取遍了这个置换群里的所有元素。换句话说就是:{ ( i , j ) P ^ } = { P ′ ^ } = { P ^ } (1.4.10) \{(i,j)\hat{P}\}=\{\hat{P'}\}=\{\hat{P}\} \tag{1.4.10} { ( i , j ) P ^ } = { P ′ ^ } = { P ^ } ( 1 . 4 . 1 0 )
# N 个全同玻色子体系\quad 对于由 N 个玻色子组成的体系,它的波函数的一般表达式我们也希望是所有 “组合” 的线性叠加:
ψ k 1 , k 2 , ⋯ , k N S ( q 1 , q 2 , ⋯ , q N ) = D ∑ P ^ P ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] = D ~ ∑ { P ^ } P ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] (1.4.11) \begin{aligned} \psi^S_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) &=D \sum_{\hat{P}}\hat{P}[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \\ &= \tilde{D}\sum_{\{\hat{P}\}}\hat{P}[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \end{aligned} \tag{1.4.11} ψ k 1 , k 2 , ⋯ , k N S ( q 1 , q 2 , ⋯ , q N ) = D P ^ ∑ P ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] = D ~ { P ^ } ∑ P ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] ( 1 . 4 . 1 1 )
上式种的记号 ∑ P ^ \sum_{\hat{P}} ∑ P ^ 和 ∑ { P ^ } \sum_{\{\hat{P}\}} ∑ { P ^ } 分别代表对于全部置换和给出不同项的置换求和。相应的 D D D 和 D ~ \tilde{D} D ~ 分别为全部展开式和合并同类项后的展开式的归一化常数。
\quad 下面我们想要证明 (1.4.11) 式的波函数,是符号 N 个玻色子的全同粒子不可分辨性的(即交换任意两个粒子波函数对称)。并且我们要找出它的归一化常数D ~ \tilde{D} D ~ 。\quad 根据上一小节的知识点⑦,我们将 (1.4.11) 式左乘任意一个对换算符 (i,j)
( i , j ) ψ k 1 , k 2 , ⋯ , k N S ( q 1 , q 2 , ⋯ , q N ) = D ∑ P ^ [ ( i , j ) P ^ ] [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] = D ∑ P ′ ^ P ′ ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] = ψ k 1 , k 2 , ⋯ , k N S ( q 1 , q 2 , ⋯ , q N ) (1.4.12) \begin{aligned} (i,j)\psi^S_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) &=D \sum_{\hat{P}}[(i,j)\hat{P}][\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \\&=D\sum_{\hat{P'}}\hat{P'}[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \\&=\psi^S_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) \tag{1.4.12} \end{aligned} ( i , j ) ψ k 1 , k 2 , ⋯ , k N S ( q 1 , q 2 , ⋯ , q N ) = D P ^ ∑ [ ( i , j ) P ^ ] [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] = D P ′ ^ ∑ P ′ ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] = ψ k 1 , k 2 , ⋯ , k N S ( q 1 , q 2 , ⋯ , q N ) ( 1 . 4 . 1 2 )
上式也就证明了这样的波函数的确满足了全同玻色子的统计要求。\quad 下面我们再来计算归一化常数D ~ \tilde{D} D ~ 。按照归一化条件,我们有:
1 = ∫ d q 1 d q 2 … d q N ψ k 1 , k 2 , ⋯ , k N ∗ ( q 1 , q 2 , ⋯ , q N ) ψ k 1 , k 2 , ⋯ , k N ( q 1 , q 2 , ⋯ , q N ) = ∣ D ~ ∣ 2 ∑ { P 1 ^ } ∑ { P 2 ^ } ∫ d q 1 d q 2 … d q N P ^ 1 [ φ k 1 ∗ ( q 1 ) ⊗ φ k 2 ∗ ( q 2 ) ⊗ ⋯ ⊗ φ k N ∗ ( q N ) ] × P ^ 2 [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] (1.4.13) \begin{aligned} 1 &= \int dq_1dq_2\dots dq_N\ \psi^*_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N)\psi_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) \\&= |\tilde{D}|^2 \sum_{\{\hat{P_1}\}} \sum_{\{\hat{P_2}\}} \int dq_1dq_2\dots dq_N\ \hat{P}_1 \left[ \varphi^*_{k_1}(q_1)\otimes\varphi^*_{k_2}(q_2)\otimes\cdots\otimes\varphi^*_{k_N}(q_N) \right] \\& \qquad \times \hat{P}_2 \left[ \varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N) \right] \end{aligned} \tag{1.4.13} 1 = ∫ d q 1 d q 2 … d q N ψ k 1 , k 2 , ⋯ , k N ∗ ( q 1 , q 2 , ⋯ , q N ) ψ k 1 , k 2 , ⋯ , k N ( q 1 , q 2 , ⋯ , q N ) = ∣ D ~ ∣ 2 { P 1 ^ } ∑ { P 2 ^ } ∑ ∫ d q 1 d q 2 … d q N P ^ 1 [ φ k 1 ∗ ( q 1 ) ⊗ φ k 2 ∗ ( q 2 ) ⊗ ⋯ ⊗ φ k N ∗ ( q N ) ] × P ^ 2 [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] ( 1 . 4 . 1 3 )
由上一节我们知道展开式中的每一项φ k 1 ( q P 1 ) ⊗ φ k 2 ( q P 2 ) ⊗ ⋯ ⊗ φ k N ( q P N ) \varphi_{k_1}(q_{P_1})\otimes\varphi_{k_2}(q_{P_2})\otimes\cdots\otimes\varphi_{k_N}(q_{P_N}) φ k 1 ( q P 1 ) ⊗ φ k 2 ( q P 2 ) ⊗ ⋯ ⊗ φ k N ( q P N ) 仅与自身的内积不为零。因此上式可化为:
1 = ∣ D ~ ∣ 2 ∑ { P ^ } ∫ d q 1 d q 2 … d q N P ^ [ φ k 1 ∗ ( q 1 ) ⊗ φ k 2 ∗ ( q 2 ) ⊗ ⋯ ⊗ φ k N ∗ ( q N ) ] × P ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] = ∣ D ~ ∣ 2 ∑ { P ^ } 1 (1.4.14) \begin{aligned} 1 &= |\tilde{D}|^2 \sum_{\{\hat{P}\}} \int dq_1dq_2\dots dq_N\ \hat{P} \left[ \varphi^*_{k_1}(q_1)\otimes\varphi^*_{k_2}(q_2)\otimes\cdots\otimes\varphi^*_{k_N}(q_N) \right] \\& \qquad \times \hat{P} \left[ \varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N) \right] \\&= |\tilde{D}|^2 \sum_{\{\hat{P}\}}1 \tag{1.4.14} \end{aligned} 1 = ∣ D ~ ∣ 2 { P ^ } ∑ ∫ d q 1 d q 2 … d q N P ^ [ φ k 1 ∗ ( q 1 ) ⊗ φ k 2 ∗ ( q 2 ) ⊗ ⋯ ⊗ φ k N ∗ ( q N ) ] × P ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] = ∣ D ~ ∣ 2 { P ^ } ∑ 1 ( 1 . 4 . 1 4 )
上式的问题是究竟有多少种不同类的置换{ P ~ } \{ \tilde{P} \} { P ~ } 。虽然上面我们写了有k 1 , k 2 , ⋯ , k N k_1,k_2,\cdots,k_N k 1 , k 2 , ⋯ , k N 的态,但其实我们的意思是这些态是可以重复的(因为玻色子没有泡利不相容原理)。假设有 M 种态,其对应态的粒子数为n k 1 , n k 2 , ⋯ , n k M n_{k_1},n_{k_2},\cdots,n_{k_M} n k 1 , n k 2 , ⋯ , n k M ,且n k 1 + n k 2 + ⋯ + n k M = N n_{k_1}+n_{k_2}+\cdots+n_{k_M}=N n k 1 + n k 2 + ⋯ + n k M = N 。那么我们的问题究竟有多少种不同类的置换{ P ~ } \{ \tilde{P} \} { P ~ } ,其实就是上一节中知识点①的内容,因此:
∑ { P ^ } 1 = N ! n k 1 ! n k 2 ! ⋯ n k M ! (1.4.15) \sum_{\{\hat{P}\}}1=\frac{N!}{n_{k_1}!n_{k_2}!\cdots n_{k_M}!} \tag{1.4.15} { P ^ } ∑ 1 = n k 1 ! n k 2 ! ⋯ n k M ! N ! ( 1 . 4 . 1 5 )
结合 (1.4.14) 和 (1.4.15) 式,可得归一化常数为:
D ~ = n k 1 ! n k 2 ! ⋯ n k M ! N ! (1.4.16) \tilde{D} = \sqrt{\frac{n_{k_1}!n_{k_2}!\cdots n_{k_M}!}{N!}} \tag{1.4.16} D ~ = N ! n k 1 ! n k 2 ! ⋯ n k M ! ( 1 . 4 . 1 6 )
这样,一组 N 个全同玻色子的完备正交归一函数可取为:
ψ k 1 , k 2 , ⋯ , k N S ( q 1 , q 2 , ⋯ , q N ) = n k 1 ! n k 2 ! ⋯ n k M ! N ! ∑ { P ^ } P ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] (1.4.17) \psi^S_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) = \sqrt{\frac{n_{k_1}!n_{k_2}!\cdots n_{k_M}!}{N!}} \sum_{\{\hat{P}\}}\hat{P}[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \tag{1.4.17} ψ k 1 , k 2 , ⋯ , k N S ( q 1 , q 2 , ⋯ , q N ) = N ! n k 1 ! n k 2 ! ⋯ n k M ! { P ^ } ∑ P ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] ( 1 . 4 . 1 7 )
# N 个全同费米子体系\quad 下面,我们来研究一下费米子波函数。对于由 N 个费米子组成的体系,它的波函数的一般表达式我们也希望是所有 “组合” 的线性叠加,但不同于玻色子,费米子的波函数是反对称的,因此我们可以将它的波函数写成一下形式:
ψ k 1 , k 2 , ⋯ , k N A ( q 1 , q 2 , ⋯ , q N ) = D ∑ P ^ δ ( P ^ ) P ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] (1.4.18) \psi^A_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) = D \sum_{\hat{P}} \delta(\hat{P}) \ \hat{P}[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \tag{1.4.18} ψ k 1 , k 2 , ⋯ , k N A ( q 1 , q 2 , ⋯ , q N ) = D P ^ ∑ δ ( P ^ ) P ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] ( 1 . 4 . 1 8 )
其中δ ( P ^ ) \delta(\hat{P}) δ ( P ^ ) 就是式 (1.4.8) 所定义的。顺便说一下,因为费米子要满足泡利不相容原理,因此上式不需要像玻色子那样多写一步合并同类项,因为每一个态上只能有一个全同粒子,所以根本没有同类项。我们可以验证,写成上式形式,费米子波函数是满足反对称性的:
( i , j ) ψ k 1 , k 2 , ⋯ , k N A ( q 1 , q 2 , ⋯ , q N ) = D ∑ P ^ δ ( P ^ ) ( i , j ) P ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] = D ∑ ( i , j ) P ^ δ ( ( i , j ) P ^ ) [ ( i , j ) P ^ ] [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] = D ∑ P ^ ( − 1 ) δ ( P ^ ) P ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] = − ψ k 1 , k 2 , ⋯ , k N A ( q 1 , q 2 , ⋯ , q N ) (1.4.19) \begin{aligned} (i,j) \psi^A_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) & = D \sum_{\hat{P}} \delta(\hat{P})(i,j) \hat{P}[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \\& = D \sum_{(i,j)\hat{P}} \delta\left((i,j)\hat{P}\right)[(i,j)\hat{P}][\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \\& = D \sum_{\hat{P}} (-1)\delta(\hat{P})\ \hat{P}[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \\& = -\psi^A_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) \tag{1.4.19} \end{aligned} ( i , j ) ψ k 1 , k 2 , ⋯ , k N A ( q 1 , q 2 , ⋯ , q N ) = D P ^ ∑ δ ( P ^ ) ( i , j ) P ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] = D ( i , j ) P ^ ∑ δ ( ( i , j ) P ^ ) [ ( i , j ) P ^ ] [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] = D P ^ ∑ ( − 1 ) δ ( P ^ ) P ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] = − ψ k 1 , k 2 , ⋯ , k N A ( q 1 , q 2 , ⋯ , q N ) ( 1 . 4 . 1 9 )
这样我们验证了它的反对称性。(注意,上式的推导用到了这一节的第一小节的知识点⑥和知识点⑦)\quad 下面我们再来讨论它的归一化因子 D。其实和玻色子的一样,因为展开式中每一项仅与其自身的内积非零且等于 1,而且由于泡利不相容原理,每个态上只能有一个粒子,因此归一化因子 D 为:
D = n k 1 ! n k 2 ! ⋯ n k N ! N ! = 1 N ! (1.4.20) D = \sqrt{\frac{n_{k_1}!n_{k_2}!\cdots n_{k_N}!}{N!}}=\frac{1}{\sqrt{N!}} \tag{1.4.20} D = N ! n k 1 ! n k 2 ! ⋯ n k N ! = N ! 1 ( 1 . 4 . 2 0 )
\quad 所以一组 N 个全同费米子的完备正交归一函数可取为:
ψ k 1 , k 2 , ⋯ , k N A ( q 1 , q 2 , ⋯ , q N ) = 1 N ! ∑ P ^ δ ( P ^ ) P ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] (1.4.21) \psi^A_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) = \frac{1}{\sqrt{N!}} \sum_{\hat{P}} \delta(\hat{P}) \ \hat{P}[\varphi_{k_1}(q_1)\otimes\varphi_{k_2}(q_2)\otimes\cdots\otimes\varphi_{k_N}(q_N)] \tag{1.4.21} ψ k 1 , k 2 , ⋯ , k N A ( q 1 , q 2 , ⋯ , q N ) = N ! 1 P ^ ∑ δ ( P ^ ) P ^ [ φ k 1 ( q 1 ) ⊗ φ k 2 ( q 2 ) ⊗ ⋯ ⊗ φ k N ( q N ) ] ( 1 . 4 . 2 1 )
\quad 最后,我们可以再来看一下,用上式表达的全同费米子体系的波函数是与泡利不相容原理自洽的。若有任意一对k i = k j k_i=k_j k i = k j ,则:
( i , j ) ψ k 1 , … , k i , … , k j , … , k N ( q 1 , … , q i , … , q j , … , q N ) = 1 N ! ∑ P ^ δ ( ( i , j ) P ^ ) P ^ [ φ k 1 ( q 1 ) ⊗ … φ k 1 ( q i ) ⊗ ⋯ ⊗ φ k 1 ( q j ) ⊗ ⋯ ⊗ φ k 1 ( q N ) ] = − 1 N ! ∑ P ^ δ ( P ^ ) P ^ [ φ k 1 ( q 1 ) ⊗ … φ k 1 ( q i ) ⊗ ⋯ ⊗ φ k 1 ( q j ) ⊗ ⋯ ⊗ φ k 1 ( q N ) ] = − ψ k 1 , … , k i , … , k j , … , k N ( q 1 , … , q i , … , q j , … , q N ) (1.4.22) \begin{aligned} & (i,j) \psi_{k_1,\dots,k_i,\dots,k_j,\dots,k_N} (q_1,\dots,q_i,\dots,q_j,\dots,q_N) \\=& \frac{1}{\sqrt{N!}} \sum_{\hat{P}} \delta\left((i,j)\hat{P}\right) \ \hat{P}\left[\varphi_{k_1}(q_1)\otimes\dots\varphi_{k_1}(q_i)\otimes\dots\otimes\varphi_{k_1}(q_j)\otimes\dots\otimes\varphi_{k_1}(q_N)\right] \\=& -\frac{1}{\sqrt{N!}} \sum_{\hat{P}} \delta(\hat{P}) \ \hat{P}\left[\varphi_{k_1}(q_1)\otimes\dots\varphi_{k_1}(q_i)\otimes\dots\otimes\varphi_{k_1}(q_j)\otimes\dots\otimes\varphi_{k_1}(q_N)\right] \\=& -\psi_{k_1,\dots,k_i,\dots,k_j,\dots,k_N} (q_1,\dots,q_i,\dots,q_j,\dots,q_N) \end{aligned} \tag{1.4.22} = = = ( i , j ) ψ k 1 , … , k i , … , k j , … , k N ( q 1 , … , q i , … , q j , … , q N ) N ! 1 P ^ ∑ δ ( ( i , j ) P ^ ) P ^ [ φ k 1 ( q 1 ) ⊗ … φ k 1 ( q i ) ⊗ ⋯ ⊗ φ k 1 ( q j ) ⊗ ⋯ ⊗ φ k 1 ( q N ) ] − N ! 1 P ^ ∑ δ ( P ^ ) P ^ [ φ k 1 ( q 1 ) ⊗ … φ k 1 ( q i ) ⊗ ⋯ ⊗ φ k 1 ( q j ) ⊗ ⋯ ⊗ φ k 1 ( q N ) ] − ψ k 1 , … , k i , … , k j , … , k N ( q 1 , … , q i , … , q j , … , q N ) ( 1 . 4 . 2 2 )
且:
( i , j ) ψ k 1 , … , k i , … , k j , … , k N ( q 1 , … , q i , … , q j , … , q N ) = ψ k 1 , … , k i , … , k j , … , k N ( q 1 , … , q j , … , q i , … , q N ) (1.4.23) \begin{aligned} & (i,j) \psi_{k_1,\dots,k_i,\dots,k_j,\dots,k_N} (q_1,\dots,q_i,\dots,q_j,\dots,q_N)=\psi_{k_1,\dots,k_i,\dots,k_j,\dots,k_N} (q_1,\dots,q_j,\dots,q_i,\dots,q_N) \tag{1.4.23} \end{aligned} ( i , j ) ψ k 1 , … , k i , … , k j , … , k N ( q 1 , … , q i , … , q j , … , q N ) = ψ k 1 , … , k i , … , k j , … , k N ( q 1 , … , q j , … , q i , … , q N ) ( 1 . 4 . 2 3 )
又因为k i = k j k_i=k_j k i = k j ,因此结合上两式得:
ψ k 1 , … , k i , … , k j , … , k N ( q 1 , … , q j , … , q i , … , q N ) = − ψ k 1 , … , k i , … , k j , … , k N ( q 1 , … , q i , … , q j , … , q N ) ⟹ ψ k 1 , … , k i , … , k j , … , k N ( q 1 , … , q i , … , q i , … , q N ) ≡ 0 (1.4.24) \begin{aligned} &\psi_{k_1,\dots,k_i,\dots,k_j,\dots,k_N} (q_1,\dots,q_j,\dots,q_i,\dots,q_N)=-\psi_{k_1,\dots,k_i,\dots,k_j,\dots,k_N} (q_1,\dots,q_i,\dots,q_j,\dots,q_N) \\ \Longrightarrow & \psi_{k_1,\dots,k_i,\dots,k_j,\dots,k_N} (q_1,\dots,q_i,\dots,q_i,\dots,q_N)\equiv0 \tag{1.4.24} \end{aligned} ⟹ ψ k 1 , … , k i , … , k j , … , k N ( q 1 , … , q j , … , q i , … , q N ) = − ψ k 1 , … , k i , … , k j , … , k N ( q 1 , … , q i , … , q j , … , q N ) ψ k 1 , … , k i , … , k j , … , k N ( q 1 , … , q i , … , q i , … , q N ) ≡ 0 ( 1 . 4 . 2 4 )
上式就说明了泡利不相容原理,不可能两个 (或以上的) 费米子存在同一个态中。
# Slater 行列式\quad 如果 (1.4.21) 式这样写法的全同费米子体系波函数觉得太麻烦了。有一种较为简便的写法。利用行列式的定义,我们可以将满足费米 - 狄拉克统计的多体波函数写作:
ψ k 1 , k 2 , ⋯ , k N A ( q 1 , q 2 , ⋯ , q N ) = 1 N ! ∣ φ k 1 ( q 1 ) φ k 2 ( q 1 ) ⋯ φ k N ( q 1 ) φ k 1 ( q 2 ) φ k 2 ( q 2 ) ⋯ φ k N ( q 2 ) ⋮ ⋮ ⋮ ⋮ φ k 1 ( q N ) φ k 2 ( q N ) ⋯ φ k N ( q N ) ∣ (1.4.25) \psi^A_{k_1,k_2,\cdots,k_N}(q_1,q_2,\cdots,q_N) = \frac{1}{\sqrt{N!}} \left| \begin{matrix} \varphi_{k_1}(q_1) & \varphi_{k_2}(q_1) & \cdots & \varphi_{k_N}(q_1) \\ \varphi_{k_1}(q_2) & \varphi_{k_2}(q_2) & \cdots & \varphi_{k_N}(q_2) \\ \vdots & \vdots & \vdots & \vdots \\ \varphi_{k_1}(q_N) & \varphi_{k_2}(q_N) & \cdots & \varphi_{k_N}(q_N) \end{matrix} \right| \tag{1.4.25} ψ k 1 , k 2 , ⋯ , k N A ( q 1 , q 2 , ⋯ , q N ) = N ! 1 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ φ k 1 ( q 1 ) φ k 1 ( q 2 ) ⋮ φ k 1 ( q N ) φ k 2 ( q 1 ) φ k 2 ( q 2 ) ⋮ φ k 2 ( q N ) ⋯ ⋯ ⋮ ⋯ φ k N ( q 1 ) φ k N ( q 2 ) ⋮ φ k N ( q N ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( 1 . 4 . 2 5 )
它被称为 Slater 行列式。只不过这里若是想把行列式化成多项式,应该用直积,而不是普通行列式的乘积。\quad 用 Slater 行列式,我们会发现许多全同费米子体系的性质与行列式的性质是能够对应上去的。例如,若我们把 Slater 行列式任意两行对换,对于行列式而言,对换任意俩行 (或两列) 会多出一个负号。而对全同费米子体系而言,对换任意两行相当于作用一个对换算符,多出一个负号刚好满足其波函数的反对称性;再例如,若有两个态是相同的,即k i = k j k_i=k_j k i = k j ,则 Slater 行列式有俩列是完全相等的,对于行列式而言,若有俩列 (或两行) 是相等的,则行列式等于零。而对于全同费米子体系而言,有两列完全相等相当于有两个粒子处于同一个态中,由于泡利不相容原理,波函数当然要等于零。
# 粒子数表象的引入\quad 采用坐标表象来描述全同粒子系的量子态是相当繁杂的,利用它来进行各种计算很不方便,所以它不是一种令人满意的表象。其根源在于:对于全同粒子进行编号是没有意义的,完全是多余的,但在波函数的上述表示方式中,又不得不先对粒子进行编号,以写出 q 表象中的某一项波函数,然后再把对粒子进行各种置换所构成的各项波函数叠加起来,以满足置换对称性 。\quad 然而事实上,我们只需要把处于每个单粒子态上的粒子数( n k 1 , n k 2 , ⋯ , n k N ) (n_{k_1},n_{k_2},\cdots,n_{k_N}) ( n k 1 , n k 2 , ⋯ , n k N ) 交代清楚,全同粒子系的量子态就完全确定了,并不需要(也没有意义)去指出某个单粒子态上的粒子是 “哪一个” 粒子。这种利用( n k 1 , n k 2 , ⋯ , n k N ) (n_{k_1},n_{k_2},\cdots,n_{k_N}) ( n k 1 , n k 2 , ⋯ , n k N ) 来标记波函数,从而避免对全同粒子进行编号,脱离 q 表象的表示方法,就被称为粒子填布数表象 ,简称粒子数表象 ,也称 Fock 表象 。对于玻色子体系和费米子体系,都可以引入这样的粒子数表象记号:
∣ n k 1 , n k 2 , ⋯ , n k N ⟩ (1.5.1) \begin{aligned} \ket{n_{k_1},n_{k_2},\cdots,n_{k_N}} \end{aligned} \tag{1.5.1} ∣ n k 1 , n k 2 , ⋯ , n k N ⟩ ( 1 . 5 . 1 )
其中n k i n_{k_i} n k i 表示单粒子态φ k i \varphi_{k_i} φ k i 在ψ k 1 , ⋯ , k N \psi_{k_1,\cdots,k_N} ψ k 1 , ⋯ , k N 中出现的次数。并要求:
n k 1 + n k 2 + ⋯ + n k N = N (1.5.2) n_{k_1}+n_{k_2}+\cdots+n_{k_N}=N \tag{1.5.2} n k 1 + n k 2 + ⋯ + n k N = N ( 1 . 5 . 2 )
\quad 显然,(1.5.1) 的这种粒子数表象的写法与我们之前坐标表象写玻色子和费米子体系的波函数是可以一一对应的。\quad 例如,对于三个玻色子体系的波函数ψ 2 k 1 , k 2 ( q 1 , q 2 , q 3 ) \psi_{2k_1,k_2}(q_1,q_2,q_3) ψ 2 k 1 , k 2 ( q 1 , q 2 , q 3 ) 可以写作∣ n k 1 = 2 , n k 2 = 1 ⟩ \ket{n_{k_1}=2,n_{k_2}=1} ∣ n k 1 = 2 , n k 2 = 1 ⟩ ,或者∣ n k 2 = 1 , n k 1 = 2 ⟩ \ket{n_{k_2}=1,n_{k_1}=2} ∣ n k 2 = 1 , n k 1 = 2 ⟩ 。而将ψ k 1 , 2 k 2 ( q 1 , q 2 , q 3 ) \psi_{k_1,2k_2}(q_1,q_2,q_3) ψ k 1 , 2 k 2 ( q 1 , q 2 , q 3 ) 可以写作∣ n k 1 = 1 , n k 2 = 2 ⟩ \ket{n_{k_1}=1,n_{k_2}=2} ∣ n k 1 = 1 , n k 2 = 2 ⟩ ,或者∣ n k 2 = 2 , n k 1 = 1 ⟩ \ket{n_{k_2}=2,n_{k_1}=1} ∣ n k 2 = 2 , n k 1 = 1 ⟩ 。\quad 而对于费米子体系,我们则要注意一个有趣的问题。记号∣ n k 1 , n k 2 ⟩ \ket{n_{k_1},n_{k_2}} ∣ n k 1 , n k 2 ⟩ 和∣ n k 2 , n k 1 ⟩ \ket{n_{k_2},n_{k_1}} ∣ n k 2 , n k 1 ⟩ 是否相等。对于玻色子,答案是肯定的。而对于费米子,我们则要稍微谨慎一点。按照定义,我们有:
∣ n k 1 = 1 , n k 2 = 1 ⟩ ⟷ ψ k 1 , k 2 ( q 1 , q 2 ) = 1 2 ! ∣ φ k 1 ( q 1 ) φ k 2 ( q 1 ) φ k 1 ( q 2 ) φ k 2 ( q 2 ) ∣ (1.5.3) \begin{aligned} \ket{n_{k_1}=1,n_{k_2}=1} \longleftrightarrow \psi_{k_1,k_2}(q_1,q_2)=\frac{1}{\sqrt{2!}} \left| \begin{matrix} \varphi_{k_1}(q_1) & \varphi_{k_2}(q_1) \\ \varphi_{k_1}(q_2) & \varphi_{k_2}(q_2) \end{matrix} \right| \tag{1.5.3} \end{aligned} ∣ n k 1 = 1 , n k 2 = 1 ⟩ ⟷ ψ k 1 , k 2 ( q 1 , q 2 ) = 2 ! 1 ∣ ∣ ∣ ∣ ∣ φ k 1 ( q 1 ) φ k 1 ( q 2 ) φ k 2 ( q 1 ) φ k 2 ( q 2 ) ∣ ∣ ∣ ∣ ∣ ( 1 . 5 . 3 )
∣ n k 2 = 1 , n k 1 = 1 ⟩ ⟷ ψ k 2 , k 1 ( q 1 , q 2 ) = 1 2 ! ∣ φ k 2 ( q 1 ) φ k 1 ( q 1 ) φ k 2 ( q 2 ) φ k 1 ( q 2 ) ∣ (1.5.4) \begin{aligned} \ket{n_{k_2}=1,n_{k_1}=1} \longleftrightarrow \psi_{k_2,k_1}(q_1,q_2)=\frac{1}{\sqrt{2!}} \left| \begin{matrix} \varphi_{k_2}(q_1) & \varphi_{k_1}(q_1) \\ \varphi_{k_2}(q_2) & \varphi_{k_1}(q_2) \end{matrix} \right| \tag{1.5.4} \end{aligned} ∣ n k 2 = 1 , n k 1 = 1 ⟩ ⟷ ψ k 2 , k 1 ( q 1 , q 2 ) = 2 ! 1 ∣ ∣ ∣ ∣ ∣ φ k 2 ( q 1 ) φ k 2 ( q 2 ) φ k 1 ( q 1 ) φ k 1 ( q 2 ) ∣ ∣ ∣ ∣ ∣ ( 1 . 5 . 4 )
根据行列式的定义,我们有:
∣ n k 1 = 1 , n k 2 = 1 ⟩ = − ∣ n k 2 = 1 , n k 1 = 1 ⟩ (1.5.5) \ket{n_{k_1}=1,n_{k_2}=1}=-\ket{n_{k_2}=1,n_{k_1}=1} \tag{1.5.5} ∣ n k 1 = 1 , n k 2 = 1 ⟩ = − ∣ n k 2 = 1 , n k 1 = 1 ⟩ ( 1 . 5 . 5 )
因此,它们并不相等。
# 产生算符和湮灭算符# 产生和湮灭算符的引入\quad 为了在粒子数表象中进行各种计算,引入粒子产生和湮灭算符是很方便的。利用它们,就可以把粒子数表象的基矢以及各种类型的力学量方便地表示出来,而且在各种计算中,只需借助这些产生算符和湮灭算符的基本对易关系,量子态的置换对称性即可以自动得以保证 。\quad 首先,我们引入一个态∣ 0 ⟩ \ket{0} ∣ 0 ⟩ ,称为真空态。这一个态代表的是没有粒子,它在坐标表象中是没有对应的。它的作用就想自然数中引入 0 一样,它的引入使得一切都能够自洽。我们要求它自身归一化,即:
⟨ 0 ∣ 0 ⟩ = 1 (1.6.1) \braket{0|0}=1 \tag{1.6.1} ⟨ 0 ∣ 0 ⟩ = 1 ( 1 . 6 . 1 )
在此基础上,我们可以定义产生算符a ^ k † \hat{a}^\dagger_k a ^ k † 。我们要求,当它作用在真空态上时,产生一个量子态为 k 的单粒子态Φ k \varPhi_k Φ k 。即我们有:
a ^ k † ∣ 0 ⟩ = ∣ n k = 1 ⟩ (1.6.2) \hat{a}^\dagger_k \ket{0} = \ket{n_k=1} \tag{1.6.2} a ^ k † ∣ 0 ⟩ = ∣ n k = 1 ⟩ ( 1 . 6 . 2 )
同时,我们还要求粒子数为一的态归一化:
⟨ n k = 1 ∣ n k = 1 ⟩ (1.6.3) \braket{n_k=1|n_k=1} \tag{1.6.3} ⟨ n k = 1 ∣ n k = 1 ⟩ ( 1 . 6 . 3 )
\quad 进一步,我们可以引入湮灭算符a ^ k \hat{a}_k a ^ k 。它由下两式定义:
a ^ k ∣ 0 ⟩ = 0 (1.6.4) \hat{a}_k \ket{0} = 0 \tag{1.6.4} a ^ k ∣ 0 ⟩ = 0 ( 1 . 6 . 4 )
a ^ k ∣ n k = 1 ⟩ = ∣ 0 ⟩ (1.6.5) \hat{a}_k \ket{n_k=1}=\ket{0} \tag{1.6.5} a ^ k ∣ n k = 1 ⟩ = ∣ 0 ⟩ ( 1 . 6 . 5 )
上两式也很好理解:湮灭算符作用到真空态等于零,因为没有东西给它湮灭了;k 态湮灭算符作用到∣ n k = 1 ⟩ \ket{n_k=1} ∣ n k = 1 ⟩ 湮灭一个 k 态的粒子,等于真空态。\quad 我们再来看看这样的一个算符n ^ k = a ^ k † a ^ k \hat{n}_k=\hat{a}^\dagger_k \hat{a}_k n ^ k = a ^ k † a ^ k ,我们可以验证一下它的作用,将它作用在∣ 0 ⟩ \ket{0} ∣ 0 ⟩ 和∣ n k = 1 ⟩ \ket{n_k=1} ∣ n k = 1 ⟩ 可以得到:
a ^ k † a ^ k ∣ 0 ⟩ = 0 (1.6.6) \hat{a}^\dagger_k \hat{a}_k \ket{0} = 0 \tag{1.6.6} a ^ k † a ^ k ∣ 0 ⟩ = 0 ( 1 . 6 . 6 )
a ^ k † a ^ k ∣ n k = 1 ⟩ = a ^ k † ∣ 0 ⟩ = ∣ n k = 1 ⟩ (1.6.7) \hat{a}^\dagger_k \hat{a}_k \ket{n_k=1} = \hat{a}^\dagger_k \ket{0} = \ket{n_k=1} \tag{1.6.7} a ^ k † a ^ k ∣ n k = 1 ⟩ = a ^ k † ∣ 0 ⟩ = ∣ n k = 1 ⟩ ( 1 . 6 . 7 )
因此,我们可以将n ^ k \hat{n}_k n ^ k 定义为粒子数算符。作用在一个态上时,它给出该态中单粒子态 k 被占据的次数。\quad 此外,我们不难验证a ^ k \hat{a}_k a ^ k 和a ^ k † \hat{a}^\dagger_k a ^ k † 互为共轭关系。(这里就不写验证啦)
\quad 上面说阐述产生算符和湮灭算符的定义和性质,无论是对于费米子体系还是玻色子体系都是适用的。但为了更加细致地研究这些产生、湮灭算符,我们下面将分别考虑全同费米子体系和全同玻色子体系的产生和湮灭算符。一般而言,玻色子体系的产生与湮灭算符用a ^ k † \hat{a}^\dagger_k a ^ k † 和a ^ k \hat{a}_k a ^ k 来表征,而费米子体系的产生与湮灭算符用C ^ k † \hat{C}^\dagger_k C ^ k † 和C ^ k \hat{C}_k C ^ k 来表征。
# 全同费米子体系的产生湮灭算符考虑到费米子体系的波函数具有交换反对称性,会导致泡利不相容原理,每一个单粒子态上最多只能允许一个粒子占据。因此我们有: C ^ k † C ^ k † ∣ 0 ⟩ = C ^ k † ∣ n k = 1 ⟩ = 0 (1.6.8) \hat{C}^\dagger_k \hat{C}^\dagger_k \ket{0} = \hat{C}^\dagger_k \ket{n_k=1} = 0 \tag{1.6.8} C ^ k † C ^ k † ∣ 0 ⟩ = C ^ k † ∣ n k = 1 ⟩ = 0 ( 1 . 6 . 8 )
因此,我们要求有:
C ^ k † C ^ k † = 0 (1.6.9) \hat{C}^\dagger_k \hat{C}^\dagger_k = 0 \tag{1.6.9} C ^ k † C ^ k † = 0 ( 1 . 6 . 9 )
取共轭后,也应有:
( C ^ k † C ^ k † ) † = C ^ k C ^ k = 0 (1.6.10) (\hat{C}^\dagger_k \hat{C}^\dagger_k)^\dagger = \hat{C}_k \hat{C}_k = 0 \tag{1.6.10} ( C ^ k † C ^ k † ) † = C ^ k C ^ k = 0 ( 1 . 6 . 1 0 )
考虑算符{ C ^ k , C ^ k † } = C ^ k C ^ k † + C ^ k † C ^ k \{\hat{C}_k,\hat{C}^\dagger_k\} = \hat{C}_k\hat{C}^\dagger_k + \hat{C}^\dagger_k\hat{C}_k { C ^ k , C ^ k † } = C ^ k C ^ k † + C ^ k † C ^ k ,并且将这个算符分别作用在∣ 0 ⟩ \ket{0} ∣ 0 ⟩ 和∣ n k = 1 ⟩ \ket{n_k=1} ∣ n k = 1 ⟩ 上得: { C ^ k , C ^ k † } ∣ 0 ⟩ = C ^ k C ^ k † ∣ 0 ⟩ + C ^ k † C ^ k ∣ 0 ⟩ = C ^ k ∣ n k = 1 ⟩ + 0 = ∣ 0 ⟩ (1.6.11) \begin{aligned} \{\hat{C}_k,\hat{C}^\dagger_k\} \ket{0} = \hat{C}_k\hat{C}^\dagger_k\ket{0} + \hat{C}^\dagger_k\hat{C}_k\ket{0} = \hat{C}_k \ket{n_k=1} + 0 = \ket{0} \end{aligned} \tag{1.6.11} { C ^ k , C ^ k † } ∣ 0 ⟩ = C ^ k C ^ k † ∣ 0 ⟩ + C ^ k † C ^ k ∣ 0 ⟩ = C ^ k ∣ n k = 1 ⟩ + 0 = ∣ 0 ⟩ ( 1 . 6 . 1 1 )
{ C ^ k , C ^ k † } ∣ n k = 1 ⟩ = C ^ k C ^ k † ∣ n k = 1 ⟩ + C ^ k † C ^ k ∣ n k = 1 ⟩ = 0 + C ^ k † ∣ 0 ⟩ = ∣ n k = 1 ⟩ (1.6.12) \begin{aligned} \{\hat{C}_k,\hat{C}^\dagger_k\} \ket{n_k=1} &= \hat{C}_k\hat{C}^\dagger_k\ket{n_k=1} + \hat{C}^\dagger_k\hat{C}_k\ket{n_k=1} \\ &= 0 + \hat{C}^\dagger_k\ket{0} = \ket{n_k=1} \end{aligned} \tag{1.6.12} { C ^ k , C ^ k † } ∣ n k = 1 ⟩ = C ^ k C ^ k † ∣ n k = 1 ⟩ + C ^ k † C ^ k ∣ n k = 1 ⟩ = 0 + C ^ k † ∣ 0 ⟩ = ∣ n k = 1 ⟩ ( 1 . 6 . 1 2 )
因此,我们很自然第要求有:
{ C ^ k , C ^ k † } = I ^ (1.6.13) \{\hat{C}_k,\hat{C}^\dagger_k\} = \hat{I} \tag{1.6.13} { C ^ k , C ^ k † } = I ^ ( 1 . 6 . 1 3 )
再考虑算符{ C ^ k † , C ^ k ′ † } = C ^ k † C ^ k ′ † + C ^ k ′ † C ^ k † \{\hat{C}^\dagger_k\ ,\hat{C}^\dagger_{k'}\} = \hat{C}^\dagger_k\hat{C}^\dagger_{k'} + \hat{C}^\dagger_{k'}\hat{C}^\dagger_k { C ^ k † , C ^ k ′ † } = C ^ k † C ^ k ′ † + C ^ k ′ † C ^ k † ,其中k ≠ k ′ k\ne k' k = k ′ ,我们可以将它作用到∣ 0 ⟩ \ket{0} ∣ 0 ⟩ 态上看看: { C ^ k † , C ^ k ′ † } ∣ 0 ⟩ = C ^ k † C ^ k ′ † ∣ 0 ⟩ + C ^ k ′ † C ^ k † ∣ 0 ⟩ = ∣ n k = 1 , n k ′ = 1 ⟩ + ∣ n k ′ = 1 , n k = 1 ⟩ = ∣ n k = 1 , n k ′ = 1 ⟩ − ∣ n k = 1 , n k ′ = 1 ⟩ = 0 (1.6.14) \begin{aligned} \{\hat{C}^\dagger_k\ ,\hat{C}^\dagger_{k'}\} \ket{0} &= \hat{C}^\dagger_k\hat{C}^\dagger_{k'} \ket{0} + \hat{C}^\dagger_{k'}\hat{C}^\dagger_k \ket{0} \\ &= \ket{n_k=1 , n_{k'}=1} + \ket{n_{k'}=1 , n_k=1} \\ &= \ket{n_k=1 , n_{k'}=1} - \ket{n_k=1 , n_{k'}=1} \\ &= 0 \end{aligned} \tag{1.6.14} { C ^ k † , C ^ k ′ † } ∣ 0 ⟩ = C ^ k † C ^ k ′ † ∣ 0 ⟩ + C ^ k ′ † C ^ k † ∣ 0 ⟩ = ∣ n k = 1 , n k ′ = 1 ⟩ + ∣ n k ′ = 1 , n k = 1 ⟩ = ∣ n k = 1 , n k ′ = 1 ⟩ − ∣ n k = 1 , n k ′ = 1 ⟩ = 0 ( 1 . 6 . 1 4 )
要注意上式运用了以下的定义:
C ^ k ′ † C ^ k † ∣ 0 ⟩ = ∣ n k ′ = 1 , n k = 1 ⟩ (1.6.15) \hat{C}^\dagger_{k'}\hat{C}^\dagger_k \ket{0} = \ket{n_{k'}=1 , n_k=1} \tag{1.6.15} C ^ k ′ † C ^ k † ∣ 0 ⟩ = ∣ n k ′ = 1 , n k = 1 ⟩ ( 1 . 6 . 1 5 )
\quad 由 (1.6.14),我们要求:
{ C ^ k † , C ^ k ′ † } = C ^ k † C ^ k ′ † + C ^ k ′ † C ^ k † = 0 (1.6.15) \{\hat{C}^\dagger_k\ ,\hat{C}^\dagger_{k'}\} = \hat{C}^\dagger_k\hat{C}^\dagger_{k'} + \hat{C}^\dagger_{k'}\hat{C}^\dagger_k = 0 \tag{1.6.15} { C ^ k † , C ^ k ′ † } = C ^ k † C ^ k ′ † + C ^ k ′ † C ^ k † = 0 ( 1 . 6 . 1 5 )
你也可以用这个算符作用到其他态上去验证,最终结果都会等于零。同理,取共轭后我们有:
{ C ^ k † , C ^ k ′ † } † = { C ^ k , C ^ k ′ } = 0 (1.6.15) \{\hat{C}^\dagger_k\ ,\hat{C}^\dagger_{k'}\}^\dagger = \{\hat{C}_k\ ,\hat{C}_{k'}\} = 0 \tag{1.6.15} { C ^ k † , C ^ k ′ † } † = { C ^ k , C ^ k ′ } = 0 ( 1 . 6 . 1 5 )
我们再来看这样一个算符{ C ^ k , C ^ k ′ † } = C ^ k C ^ k ′ † + C ^ k ′ † C ^ k \{\hat{C}_k\ ,\hat{C}^\dagger_{k'}\} = \hat{C}_k\hat{C}^\dagger_{k'} + \hat{C}^\dagger_{k'}\hat{C}_k { C ^ k , C ^ k ′ † } = C ^ k C ^ k ′ † + C ^ k ′ † C ^ k ,我们可以验证这个算符满足以下等式: { C ^ k , C ^ k ′ † } = 0 (1.6.16) \{\hat{C}_k\ ,\hat{C}^\dagger_{k'}\} = 0 \tag{1.6.16} { C ^ k , C ^ k ′ † } = 0 ( 1 . 6 . 1 6 )
我们取一个态来验证以下:
{ C ^ k , C ^ k ′ † } ∣ n k = 0 , n k ′ = 1 ⟩ = C ^ k C ^ k ′ † ∣ n k = 0 , n k ′ = 1 ⟩ + C ^ k ′ † C ^ k ∣ n k = 0 , n k ′ = 1 ⟩ = − C ^ k C ^ k ′ † ∣ n k ′ = 1 , n k = 0 ⟩ + C ^ k ′ † ∣ n k = 1 , n k ′ = 1 ⟩ = 0 − C ^ k ′ † ∣ n k ′ = 1 , n k = 1 ⟩ = 0 (1.6.17) \begin{aligned} \{\hat{C}_k\ ,\hat{C}^\dagger_{k'}\} \ket{n_k=0,n_{k'}=1} &= \hat{C}_k\hat{C}^\dagger_{k'} \ket{n_k=0,n_{k'}=1} + \hat{C}^\dagger_{k'}\hat{C}_k \ket{n_k=0,n_{k'}=1} \\&= -\hat{C}_k\hat{C}^\dagger_{k'} \ket{n_{k'}=1,n_k=0} + \hat{C}^\dagger_{k'} \ket{n_k=1,n_{k'}=1} \\&= 0 - \hat{C}^\dagger_{k'} \ket{n_{k'}=1,n_k=1} = 0 \end{aligned} \tag{1.6.17} { C ^ k , C ^ k ′ † } ∣ n k = 0 , n k ′ = 1 ⟩ = C ^ k C ^ k ′ † ∣ n k = 0 , n k ′ = 1 ⟩ + C ^ k ′ † C ^ k ∣ n k = 0 , n k ′ = 1 ⟩ = − C ^ k C ^ k ′ † ∣ n k ′ = 1 , n k = 0 ⟩ + C ^ k ′ † ∣ n k = 1 , n k ′ = 1 ⟩ = 0 − C ^ k ′ † ∣ n k ′ = 1 , n k = 1 ⟩ = 0 ( 1 . 6 . 1 7 )
\quad 将上面的四点内容总结为下面四个公式 (一条定义,三条反对易关系) 如下:
C ^ k † C ^ k † = C ^ k C ^ k = 0 { C ^ k , C ^ k † } = I ^ { C ^ k † , C ^ k ′ † } = { C ^ k , C ^ k ′ } = 0 { C ^ k , C ^ k ′ † } = 0 (1.6.18) \begin{array}{|c|} \hline \\ \hat{C}^\dagger_k \hat{C}^\dagger_k = \hat{C}_k \hat{C}_k = 0 \\ \\ \{\hat{C}_k,\hat{C}^\dagger_k\} = \hat{I} \\ \\ \{\hat{C}^\dagger_k\ ,\hat{C}^\dagger_{k'}\} = \{\hat{C}_k\ ,\hat{C}_{k'}\} = 0 \\ \\ \{\hat{C}_k\ ,\hat{C}^\dagger_{k'}\} = 0 \\ \\ \hline \end{array} \tag{1.6.18} C ^ k † C ^ k † = C ^ k C ^ k = 0 { C ^ k , C ^ k † } = I ^ { C ^ k † , C ^ k ′ † } = { C ^ k , C ^ k ′ } = 0 { C ^ k , C ^ k ′ † } = 0 ( 1 . 6 . 1 8 )
上面的四式概括了费米子产生和湮灭算符的全部代数性质。在以后的计算中,我们只需注意它们,那么费米子体系波函数的交换反对称性就自动满足了!小念叨:在上面的四式,我都没有给证明,而是给验证。而实际上它们也是自洽的。我不知道是否有严格的证明,或者说它的基本假设和公理到底是什么。但至少在田光善老师的讲义中有这么一句 “这些反对易关系的正确性由它们的自洽性来验证”。
# 全同玻色子体系的产生湮灭算符由于玻色子不同与费米子,其波函数具有交换对称性,不会导致泡利不相容原理,因此我们一般有: ( a ^ k † ) n ≠ 0 (1.6.19) (\hat{a}^\dagger_k)^n \ne 0 \tag{1.6.19} ( a ^ k † ) n = 0 ( 1 . 6 . 1 9 )
考虑到算符[ a ^ k , a ^ k † ] = a ^ k a ^ k † − a ^ k † a ^ k [\hat{a}_k , \hat{a}^\dagger_k] = \hat{a}_k\hat{a}^\dagger_k - \hat{a}^\dagger_k\hat{a}_k [ a ^ k , a ^ k † ] = a ^ k a ^ k † − a ^ k † a ^ k , 我们可以验证这个算符满足: [ a ^ k , a ^ k † ] = I ^ (1.6.20) [\hat{a}_k , \hat{a}^\dagger_k] = \hat{I} \tag{1.6.20} [ a ^ k , a ^ k † ] = I ^ ( 1 . 6 . 2 0 )
可以取两个态来验证一下:
[ a ^ k , a ^ k † ] ∣ 0 ⟩ = a ^ k a ^ k † ∣ 0 ⟩ − a ^ k † a ^ k ∣ 0 ⟩ = a ^ k ∣ n k = 1 ⟩ − 0 = ∣ 0 ⟩ (1.6.21) [\hat{a}_k , \hat{a}^\dagger_k] \ket{0} = \hat{a}_k\hat{a}^\dagger_k\ket{0} - \hat{a}^\dagger_k\hat{a}_k\ket{0} = \hat{a}_k\ket{n_k=1}-0 = \ket{0} \tag{1.6.21} [ a ^ k , a ^ k † ] ∣ 0 ⟩ = a ^ k a ^ k † ∣ 0 ⟩ − a ^ k † a ^ k ∣ 0 ⟩ = a ^ k ∣ n k = 1 ⟩ − 0 = ∣ 0 ⟩ ( 1 . 6 . 2 1 )
[ a ^ k , a ^ k † ] ∣ n k = N ⟩ = a ^ k a ^ k † ∣ n k = N ⟩ − a ^ k † a ^ k ∣ n k = N ⟩ = N + 1 a ^ k ∣ n k = N + 1 ⟩ − N a ^ k † ∣ N − 1 ⟩ = ( N + 1 ) ∣ n k = N ⟩ − N ∣ n k = 1 ⟩ = ∣ n k = N ⟩ (1.6.22) \begin{aligned} [\hat{a}_k , \hat{a}^\dagger_k] \ket{n_k=N} &= \hat{a}_k\hat{a}^\dagger_k\ket{n_k=N}- \hat{a}^\dagger_k\hat{a}_k\ket{n_k=N} \\&= \sqrt{N+1}\hat{a}_k\ket{n_k=N+1} - \sqrt{N}\hat{a}^\dagger_k\ket{N-1} \\&= (N+1)\ket{n_k=N} - N\ket{n_k=1} = \ket{n_k=N} \tag{1.6.22} \end{aligned} [ a ^ k , a ^ k † ] ∣ n k = N ⟩ = a ^ k a ^ k † ∣ n k = N ⟩ − a ^ k † a ^ k ∣ n k = N ⟩ = N + 1 a ^ k ∣ n k = N + 1 ⟩ − N a ^ k † ∣ N − 1 ⟩ = ( N + 1 ) ∣ n k = N ⟩ − N ∣ n k = 1 ⟩ = ∣ n k = N ⟩ ( 1 . 6 . 2 2 )
注意,上式的第二条验证中用到了玻色子产生与湮灭算符结果的归一化,这在后面会讲。
考虑到算符[ a ^ k † , a ^ k ′ † ] = a ^ k † a ^ k ′ † − a ^ k ′ † a ^ k † [\hat{a}^\dagger_k \ , \hat{a}^\dagger_{k'}] = \hat{a}^\dagger_k\hat{a}^\dagger_{k'} - \hat{a}^\dagger_{k'}\hat{a}^\dagger_k [ a ^ k † , a ^ k ′ † ] = a ^ k † a ^ k ′ † − a ^ k ′ † a ^ k † 。我们可以验证这个算符满足: [ a ^ k † , a ^ k ′ † ] = 0 (1.6.23) [\hat{a}^\dagger_k \ , \hat{a}^\dagger_{k'}] = 0 \tag{1.6.23} [ a ^ k † , a ^ k ′ † ] = 0 ( 1 . 6 . 2 3 )
同理取共轭也满足:
[ a ^ k † , a ^ k ′ † ] † = [ a ^ k , a ^ k ′ ] = 0 (1.6.23) [\hat{a}^\dagger_k \ , \hat{a}^\dagger_{k'}]^\dagger = [\hat{a}_k \ , \hat{a}_{k'}] = 0 \tag{1.6.23} [ a ^ k † , a ^ k ′ † ] † = [ a ^ k , a ^ k ′ ] = 0 ( 1 . 6 . 2 3 )
我们取一个态来验证一下:
[ a ^ k † , a ^ k ′ † ] ∣ n k = N , n k ′ = M ⟩ = a ^ k † a ^ k ′ † ∣ n k = N , n k ′ = M ⟩ − a ^ k ′ † a ^ k † ∣ n k = N , n k ′ = M ⟩ = M + 1 a ^ k † ∣ n k = N , n k ′ = M + 1 ⟩ − N + 1 a ^ k ′ † ∣ n k = N + 1 , n k ′ = M ⟩ = M + 1 N + 1 ∣ n k = N + 1 , n k ′ = M + 1 ⟩ − N + 1 M + 1 ∣ n k = N + 1 , n k ′ = M + 1 ⟩ = 0 (1.6.24) \begin{aligned} [\hat{a}^\dagger_k \ , \hat{a}^\dagger_{k'}] \ket{n_k=N , n_{k'}=M} &= \hat{a}^\dagger_k\hat{a}^\dagger_{k'}\ket{n_k=N , n_{k'}=M} - \hat{a}^\dagger_{k'}\hat{a}^\dagger_k\ket{n_k=N , n_{k'}=M} \\&= \sqrt{M+1} \ \hat{a}^\dagger_k \ket{n_k=N , n_{k'}=M+1} - \sqrt{N+1} \ \hat{a}^\dagger_{k'} \ket{n_k=N+1 , n_{k'}=M} \\&= \sqrt{M+1}\sqrt{N+1} \ \ket{n_k=N+1 , n_{k'}=M+1} - \sqrt{N+1}\sqrt{M+1} \ \ket{n_k=N+1 , n_{k'}=M+1} \\&= 0 \end{aligned} \tag{1.6.24} [ a ^ k † , a ^ k ′ † ] ∣ n k = N , n k ′ = M ⟩ = a ^ k † a ^ k ′ † ∣ n k = N , n k ′ = M ⟩ − a ^ k ′ † a ^ k † ∣ n k = N , n k ′ = M ⟩ = M + 1 a ^ k † ∣ n k = N , n k ′ = M + 1 ⟩ − N + 1 a ^ k ′ † ∣ n k = N + 1 , n k ′ = M ⟩ = M + 1 N + 1 ∣ n k = N + 1 , n k ′ = M + 1 ⟩ − N + 1 M + 1 ∣ n k = N + 1 , n k ′ = M + 1 ⟩ = 0 ( 1 . 6 . 2 4 )
再考虑算符[ a ^ k , a ^ k ′ † ] = a ^ k a ^ k ′ † − a ^ k ′ † a ^ k [\hat{a}_k \ , \hat{a}^\dagger_{k'}] = \hat{a}_k\hat{a}^\dagger_{k'} - \hat{a}^\dagger_{k'}\hat{a}_k [ a ^ k , a ^ k ′ † ] = a ^ k a ^ k ′ † − a ^ k ′ † a ^ k 。我们可以验证这个算符满足: [ a ^ k , a ^ k ′ † ] = 0 (1.6.25) [\hat{a}_k \ , \hat{a}^\dagger_{k'}] = 0 \tag{1.6.25} [ a ^ k , a ^ k ′ † ] = 0 ( 1 . 6 . 2 5 )
同样,我们取一个态来验证一下:
[ a ^ k , a ^ k ′ † ] ∣ n k = N , n k ′ = M ⟩ = a ^ k a ^ k ′ † ∣ n k = N , n k ′ = M ⟩ − a ^ k ′ † a ^ k ∣ n k = N , n k ′ = M ⟩ = M + 1 a ^ k ∣ n k = N , n k ′ = M + 1 ⟩ − N + 1 a ^ k ′ † ∣ n k = N + 1 , n k ′ = M ⟩ = M + 1 N + 1 ∣ n k = N + 1 , n k ′ = M + 1 ⟩ − N + 1 M + 1 ∣ n k = N + 1 , n k ′ = M + 1 ⟩ = 0 (1.6.26) \begin{aligned} [\hat{a}_k \ , \hat{a}^\dagger_{k'}]\ket{n_k=N , n_{k'}=M} &= \hat{a}_k\hat{a}^\dagger_{k'}\ket{n_k=N , n_{k'}=M} - \hat{a}^\dagger_{k'}\hat{a}_k\ket{n_k=N , n_{k'}=M} \\&= \sqrt{M+1} \ \hat{a}_k\ket{n_k=N , n_{k'}=M+1} - \sqrt{N+1} \ \hat{a}^\dagger_{k'}\ket{n_k=N+1 , n_{k'}=M} \\&= \sqrt{M+1}\sqrt{N+1} \ \ket{n_k=N+1 , n_{k'}=M+1} - \sqrt{N+1}\sqrt{M+1} \ \ket{n_k=N+1 , n_{k'}=M+1} \\&= 0 \end{aligned} \tag{1.6.26} [ a ^ k , a ^ k ′ † ] ∣ n k = N , n k ′ = M ⟩ = a ^ k a ^ k ′ † ∣ n k = N , n k ′ = M ⟩ − a ^ k ′ † a ^ k ∣ n k = N , n k ′ = M ⟩ = M + 1 a ^ k ∣ n k = N , n k ′ = M + 1 ⟩ − N + 1 a ^ k ′ † ∣ n k = N + 1 , n k ′ = M ⟩ = M + 1 N + 1 ∣ n k = N + 1 , n k ′ = M + 1 ⟩ − N + 1 M + 1 ∣ n k = N + 1 , n k ′ = M + 1 ⟩ = 0 ( 1 . 6 . 2 6 )
\quad 将上面的四点内容总结为下面四个公式 (一条定义,三条反对易关系) 如下:
a ^ k † a ^ k † ≠ 0 [ a ^ k , a ^ k † ] = I ^ [ a ^ k † , a ^ k ′ † ] = [ a ^ k , a ^ k ′ ] = 0 [ a ^ k , a ^ k ′ † ] = 0 (1.6.27) \begin{array}{|c|} \hline \\ \hat{a}^\dagger_k \hat{a}^\dagger_k \ne 0 \\ \\ [\hat{a}_k \ ,\hat{a}^\dagger_k] = \hat{I} \\ \\ [\hat{a}^\dagger_k\ ,\hat{a}^\dagger_{k'}] = [\hat{a}_k\ ,\hat{a}_{k'}] = 0 \\ \\ [\hat{a}_k\ ,\hat{a}^\dagger_{k'}] = 0 \\ \\ \hline \end{array} \tag{1.6.27} a ^ k † a ^ k † = 0 [ a ^ k , a ^ k † ] = I ^ [ a ^ k † , a ^ k ′ † ] = [ a ^ k , a ^ k ′ ] = 0 [ a ^ k , a ^ k ′ † ] = 0 ( 1 . 6 . 2 7 )
上面的四式概括了玻色子产生和湮灭算符的全部代数性质。在以后的计算中,我们只需注意它们,那么费米子体系波函数的交换对称性就自动满足了!
# 粒子数表象下的波函数# 全同费米子体系在粒子数表象下的量子态描述\quad 我们在上面也提到过,由于全同费米子体系的波函数要满足交换的反对称,因此要严格注意一点:
∣ n k = 1 , n k ′ = 1 ⟩ = − ∣ n k ′ = 1 , n k = 1 ⟩ (1.7.1) \ket{n_k=1 , n_{k'}=1} = - \ket{n_{k'}=1 , n_k=1} \tag{1.7.1} ∣ n k = 1 , n k ′ = 1 ⟩ = − ∣ n k ′ = 1 , n k = 1 ⟩ ( 1 . 7 . 1 )
但如果粒子数更多,这样的写法就会比较麻烦,因为我们很难一直注意到 ket 内的顺序,其实上式的两个波函数可以写成这样:
∣ n k = 1 , n k ′ = 1 ⟩ = C ^ k † C ^ k ′ † ∣ 0 ⟩ (1.7.2) \ket{n_k=1 , n_{k'}=1} = \hat{C}^\dagger_k \hat{C}^\dagger_{k'} \ket{0} \tag{1.7.2} ∣ n k = 1 , n k ′ = 1 ⟩ = C ^ k † C ^ k ′ † ∣ 0 ⟩ ( 1 . 7 . 2 )
∣ n k ′ = 1 , n k = 1 ⟩ = C ^ k ′ † C ^ k † ∣ 0 ⟩ (1.7.3) \ket{n_{k'}=1 , n_k=1} = \hat{C}^\dagger_{k'} \hat{C}^\dagger_k \ket{0} \tag{1.7.3} ∣ n k ′ = 1 , n k = 1 ⟩ = C ^ k ′ † C ^ k † ∣ 0 ⟩ ( 1 . 7 . 3 )
这样的写法,我们通过 (1.6.27) 中的反对易关系[ C ^ k † , C ^ k ′ † ] = 0 [\hat{C}^\dagger_k\ ,\hat{C}^\dagger_{k'}]=0 [ C ^ k † , C ^ k ′ † ] = 0 就可以很轻易地由 (1.7.2)(1.7.3) 推出 (1.7.1), 如下:
C ^ k † C ^ k ′ † ∣ 0 ⟩ = − C ^ k ′ † C ^ k † ∣ 0 ⟩ ⟹ ∣ n k = 1 , n k ′ = 1 ⟩ = − ∣ n k ′ = 1 , n k = 1 ⟩ (1.7.4) \begin{aligned} & \hat{C}^\dagger_k \hat{C}^\dagger_{k'} \ket{0} = - \hat{C}^\dagger_{k'} \hat{C}^\dagger_k \ket{0} \\ \Longrightarrow & \ket{n_k=1 , n_{k'}=1} = - \ket{n_{k'}=1 , n_k=1} \end{aligned} \tag{1.7.4} ⟹ C ^ k † C ^ k ′ † ∣ 0 ⟩ = − C ^ k ′ † C ^ k † ∣ 0 ⟩ ∣ n k = 1 , n k ′ = 1 ⟩ = − ∣ n k ′ = 1 , n k = 1 ⟩ ( 1 . 7 . 4 )
\quad 同理地,更多粒子的全同费米子体系也可以写成这样:
∣ n 1 = 1 , n 2 = 1 , ⋯ , n N = 1 ⟩ = C ^ 1 † C ^ 2 † ⋯ C ^ N † ∣ 0 ⟩ (1.7.5) \ket{n_1=1,n_2=1,\cdots,n_N=1} = \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots\hat{C}^\dagger_N \ket{0} \tag{1.7.5} ∣ n 1 = 1 , n 2 = 1 , ⋯ , n N = 1 ⟩ = C ^ 1 † C ^ 2 † ⋯ C ^ N † ∣ 0 ⟩ ( 1 . 7 . 5 )
\quad 若我们想要在上式中的α \alpha α 态上原本是没有粒子的,我们想要在该态上产生一个粒子,我们当然可以直接作用从而写成 (1.7.6) 式,也可以用到{ C ^ k † , C ^ k ′ † } = 0 \{\hat{C}^\dagger_k\ ,\hat{C}^\dagger_{k'}\}=0 { C ^ k † , C ^ k ′ † } = 0 的反对易关系写出 (1.7.7) 式:
C ^ α † ∣ n 1 = 1 , n 2 = 1 , ⋯ , n N = 1 ⟩ = C ^ α † C ^ 1 † C ^ 2 † ⋯ C ^ N † ∣ 0 ⟩ = ∣ n α = 1 , n 1 = 1 , n 2 = 1 , ⋯ , n N = 1 ⟩ (1.7.6) \begin{aligned} \hat{C}^\dagger_\alpha \ket{n_1=1,n_2=1,\cdots,n_N=1} = \hat{C}^\dagger_\alpha \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots\hat{C}^\dagger_N \ket{0} = \ket{n_\alpha=1,n_1=1,n_2=1,\cdots,n_N=1} \end{aligned} \tag{1.7.6} C ^ α † ∣ n 1 = 1 , n 2 = 1 , ⋯ , n N = 1 ⟩ = C ^ α † C ^ 1 † C ^ 2 † ⋯ C ^ N † ∣ 0 ⟩ = ∣ n α = 1 , n 1 = 1 , n 2 = 1 , ⋯ , n N = 1 ⟩ ( 1 . 7 . 6 )
C ^ α † ∣ n 1 = 1 , n 2 = 1 , ⋯ , n N = 1 ⟩ = C ^ α † C ^ 1 † C ^ 2 † ⋯ C ^ N † ∣ 0 ⟩ = ( − 1 ) C ^ 1 † C ^ α † C ^ 2 † ⋯ C ^ N † ∣ 0 ⟩ = ( − 1 ) 2 C ^ 1 † C ^ 2 † C ^ α † ⋯ C ^ N † ∣ 0 ⟩ = ⋯ = ( − 1 ) i C ^ 1 † C ^ 2 † ⋯ C ^ i † C ^ α † ⋯ C ^ N † ∣ 0 ⟩ = ( − 1 ) i ∣ n 1 = 1 , n 2 = 1 , ⋯ , n i = 1 , n α = 1 , ⋯ , n N = 1 ⟩ (1.7.7) \begin{aligned} \hat{C}^\dagger_\alpha \ket{n_1=1,n_2=1,\cdots,n_N=1} &= \hat{C}^\dagger_\alpha \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots\hat{C}^\dagger_N \ket{0} \\&= (-1) \hat{C}^\dagger_1 \hat{C}^\dagger_\alpha \hat{C}^\dagger_2 \cdots\hat{C}^\dagger_N \ket{0} \\&= (-1)^2 \hat{C}^\dagger_1 \hat{C}^\dagger_2 \hat{C}^\dagger_\alpha \cdots\hat{C}^\dagger_N \ket{0} \\&= \cdots \\&= (-1)^i \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots \hat{C}^\dagger_i \hat{C}^\dagger_\alpha \cdots \hat{C}^\dagger_N \ket{0} \\&= (-1)^i \ket{n_1=1,n_2=1,\cdots,n_i=1,n_\alpha=1,\cdots,n_N=1} \end{aligned} \tag{1.7.7} C ^ α † ∣ n 1 = 1 , n 2 = 1 , ⋯ , n N = 1 ⟩ = C ^ α † C ^ 1 † C ^ 2 † ⋯ C ^ N † ∣ 0 ⟩ = ( − 1 ) C ^ 1 † C ^ α † C ^ 2 † ⋯ C ^ N † ∣ 0 ⟩ = ( − 1 ) 2 C ^ 1 † C ^ 2 † C ^ α † ⋯ C ^ N † ∣ 0 ⟩ = ⋯ = ( − 1 ) i C ^ 1 † C ^ 2 † ⋯ C ^ i † C ^ α † ⋯ C ^ N † ∣ 0 ⟩ = ( − 1 ) i ∣ n 1 = 1 , n 2 = 1 , ⋯ , n i = 1 , n α = 1 , ⋯ , n N = 1 ⟩ ( 1 . 7 . 7 )
当然,若原本态α \alpha α 上就存在粒子,那么由于泡利不相容原理,作用C ^ α † \hat{C}^\dagger_\alpha C ^ α † 后,等于零:
C ^ α † ∣ n 1 = 1 , n 2 = 1 , ⋯ , n α = 1 , ⋯ , n N = 1 ⟩ = 0 (1.7.8) \hat{C}^\dagger_\alpha \ket{n_1=1,n_2=1,\cdots,n_\alpha=1,\cdots,n_N=1} = 0 \tag{1.7.8} C ^ α † ∣ n 1 = 1 , n 2 = 1 , ⋯ , n α = 1 , ⋯ , n N = 1 ⟩ = 0 ( 1 . 7 . 8 )
\quad 若我们想要在上式中的α \alpha α 态上原本就有一个粒子的,我们想要在该态上湮灭掉这个粒子,则要利用{ C ^ k , C ^ k ′ † } = 0 \{\hat{C}_k\ ,\hat{C}^\dagger_{k'}\}=0 { C ^ k , C ^ k ′ † } = 0 和{ C ^ k , C ^ k † } = I ^ \{\hat{C}_k\ ,\hat{C}^\dagger_k\}=\hat{I} { C ^ k , C ^ k † } = I ^ 的反对易关系:
C ^ α ∣ n 1 = 1 , n 2 = 1 , ⋯ , n i = 1 , n α = 1 , ⋯ , n N = 1 ⟩ = C ^ α C ^ 1 † C ^ 2 † ⋯ C ^ i † C ^ α † ⋯ C ^ N † ∣ 0 ⟩ = ( − 1 ) C ^ 1 † C ^ α C ^ 2 † ⋯ C ^ i † C ^ α † ⋯ C ^ N † ∣ 0 ⟩ = ( − 1 ) 2 C ^ 1 † C ^ 2 † C ^ α ⋯ C ^ i † C ^ α † ⋯ C ^ N † ∣ 0 ⟩ = ⋯ = ( − 1 ) i C ^ 1 † C ^ 2 † ⋯ C ^ i † C ^ α C ^ α † ⋯ C ^ N † ∣ 0 ⟩ = ( − 1 ) i C ^ 1 † C ^ 2 † ⋯ C ^ i † [ I ^ − C ^ α † C ^ α ] ⋯ C ^ N † ∣ 0 ⟩ = ( − 1 ) i C ^ 1 † C ^ 2 † ⋯ C ^ i † ⋯ C ^ N † ∣ 0 ⟩ − ( − 1 ) i C ^ 1 † C ^ 2 † ⋯ C ^ i † C ^ α † C ^ α C ^ j ⋯ C ^ N † ∣ 0 ⟩ = ( − 1 ) i ∣ n 1 = 1 , n 2 = 1 , ⋯ , n i = 1 , n α = 0 , ⋯ , n N = 1 ⟩ + ( − 1 ) i + N − j C ^ 1 † C ^ 2 † ⋯ C ^ i † C ^ α † C ^ j ⋯ C ^ N † C ^ α ∣ 0 ⟩ = ( − 1 ) i ∣ n 1 = 1 , n 2 = 1 , ⋯ , n i = 1 , n α = 0 , ⋯ , n N = 1 ⟩ (1.7.9) \begin{aligned} &\quad \ \hat{C}_\alpha \ket{n_1=1,n_2=1,\cdots,n_i=1,n_\alpha=1,\cdots,n_N=1} \\&= \hat{C}_\alpha \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots \hat{C}^\dagger_i \hat{C}^\dagger_\alpha \cdots \hat{C}^\dagger_N \ket{0} \\&= (-1) \hat{C}^\dagger_1 \hat{C}_\alpha \hat{C}^\dagger_2 \cdots \hat{C}^\dagger_i \hat{C}^\dagger_\alpha \cdots \hat{C}^\dagger_N \ket{0} \\&= (-1)^2 \hat{C}^\dagger_1 \hat{C}^\dagger_2 \hat{C}_\alpha \cdots \hat{C}^\dagger_i \hat{C}^\dagger_\alpha \cdots \hat{C}^\dagger_N \ket{0} \\&= \cdots \\&= (-1)^i \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots \hat{C}^\dagger_i \hat{C}_\alpha \hat{C}^\dagger_\alpha \cdots \hat{C}^\dagger_N \ket{0} \\&= (-1)^i \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots \hat{C}^\dagger_i [\hat{I} - \hat{C}^\dagger_\alpha \hat{C}_\alpha] \cdots \hat{C}^\dagger_N \ket{0} \\&= (-1)^i \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots \hat{C}^\dagger_i \cdots \hat{C}^\dagger_N \ket{0} - (-1)^i \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots \hat{C}^\dagger_i \hat{C}^\dagger_\alpha \hat{C}_\alpha \hat{C}_j \cdots \hat{C}^\dagger_N \ket{0} \\&= (-1)^i \ket{n_1=1,n_2=1,\cdots,n_i=1,n_\alpha=0,\cdots,n_N=1} + (-1)^{i+N-j} \hat{C}^\dagger_1 \hat{C}^\dagger_2 \cdots \hat{C}^\dagger_i \hat{C}^\dagger_\alpha \hat{C}_j \cdots \hat{C}^\dagger_N \hat{C}_\alpha \ket{0} \\&= (-1)^i \ket{n_1=1,n_2=1,\cdots,n_i=1,n_\alpha=0,\cdots,n_N=1} \end{aligned} \tag{1.7.9} C ^ α ∣ n 1 = 1 , n 2 = 1 , ⋯ , n i = 1 , n α = 1 , ⋯ , n N = 1 ⟩ = C ^ α C ^ 1 † C ^ 2 † ⋯ C ^ i † C ^ α † ⋯ C ^ N † ∣ 0 ⟩ = ( − 1 ) C ^ 1 † C ^ α C ^ 2 † ⋯ C ^ i † C ^ α † ⋯ C ^ N † ∣ 0 ⟩ = ( − 1 ) 2 C ^ 1 † C ^ 2 † C ^ α ⋯ C ^ i † C ^ α † ⋯ C ^ N † ∣ 0 ⟩ = ⋯ = ( − 1 ) i C ^ 1 † C ^ 2 † ⋯ C ^ i † C ^ α C ^ α † ⋯ C ^ N † ∣ 0 ⟩ = ( − 1 ) i C ^ 1 † C ^ 2 † ⋯ C ^ i † [ I ^ − C ^ α † C ^ α ] ⋯ C ^ N † ∣ 0 ⟩ = ( − 1 ) i C ^ 1 † C ^ 2 † ⋯ C ^ i † ⋯ C ^ N † ∣ 0 ⟩ − ( − 1 ) i C ^ 1 † C ^ 2 † ⋯ C ^ i † C ^ α † C ^ α C ^ j ⋯ C ^ N † ∣ 0 ⟩ = ( − 1 ) i ∣ n 1 = 1 , n 2 = 1 , ⋯ , n i = 1 , n α = 0 , ⋯ , n N = 1 ⟩ + ( − 1 ) i + N − j C ^ 1 † C ^ 2 † ⋯ C ^ i † C ^ α † C ^ j ⋯ C ^ N † C ^ α ∣ 0 ⟩ = ( − 1 ) i ∣ n 1 = 1 , n 2 = 1 , ⋯ , n i = 1 , n α = 0 , ⋯ , n N = 1 ⟩ ( 1 . 7 . 9 )
# 全同玻色子体系在粒子数表象下的量子态描述\quad 同样的,全同玻色子的波函数在粒子数表象下的量子态也可以用产生湮灭算符表示:
∣ n k = N ⟩ = D ( a ^ k † ) N ∣ 0 ⟩ (1.7.10) \ket{n_k=N} = D (\hat{a}^\dagger_k)^N \ket{0} \tag{1.7.10} ∣ n k = N ⟩ = D ( a ^ k † ) N ∣ 0 ⟩ ( 1 . 7 . 1 0 )
但上式右边是一个归一化常数。下面我们想要确定这个归一化常数,我们先来计算( a ^ k † ) N ∣ 0 ⟩ (\hat{a}^\dagger_k)^N \ket{0} ( a ^ k † ) N ∣ 0 ⟩ 与自身的内积:
I N = ( ( a ^ k † ) N ∣ 0 ⟩ ) † ( ( a ^ k † ) N ∣ 0 ⟩ ) = ⟨ 0 ∣ ( a ^ k ) N ( a ^ k † ) N ∣ 0 ⟩ = ⟨ 0 ∣ ( a ^ k ) N − 1 a ^ k a ^ k † ( a ^ k † ) N − 1 ∣ 0 ⟩ = ⟨ 0 ∣ ( a ^ k ) N − 1 [ I ^ + a ^ k † a ^ k ] ( a ^ k † ) N − 1 ∣ 0 ⟩ = ⟨ 0 ∣ ( a ^ k ) N − 1 ( a ^ k † ) N − 1 ∣ 0 ⟩ + ⟨ 0 ∣ ( a ^ k ) N − 1 a ^ k † a ^ k ( a ^ k † ) N − 1 ∣ 0 ⟩ ( = ⟨ 0 ∣ ( a ^ k ) N − 1 ( a ^ k † ) N − 1 ∣ 0 ⟩ + ( N − 1 ) ⟨ 0 ∣ ( a ^ k ) N − 1 ( a ^ k † ) N − 1 ∣ 0 ⟩ ) = I N − 1 + ⟨ 0 ∣ ( a ^ k ) N − 1 a ^ k † [ I ^ + a ^ k † a ^ k ] ( a ^ k † ) N − 2 ∣ 0 ⟩ = 2 I N − 1 + ⟨ 0 ∣ ( a ^ k ) N − 1 ( a ^ k † ) 2 a ^ k ( a ^ k † ) N − 2 ∣ 0 ⟩ = ⋯ = N I N − 1 + ⟨ 0 ∣ ( a ^ k ) N − 1 ( a ^ k † ) N a ^ k ∣ 0 ⟩ = N I N − 1 + 0 = N ( N − 1 ) I N − 2 = ⋯ = N ! (1.7.11) \begin{aligned} I_N &= ((\hat{a}^\dagger_k)^N \ket{0})^\dagger ((\hat{a}^\dagger_k)^N \ket{0}) = \braket{0|(\hat{a}_k)^N(\hat{a}^\dagger_k)^N|0} \\&= \braket{0|(\hat{a}_k)^{N-1} \hat{a}_k \hat{a}^\dagger_k (\hat{a}^\dagger_k)^{N-1}|0} \\&= \braket{0|(\hat{a}_k)^{N-1} \ [\hat{I} + \hat{a}^\dagger_k \hat{a}_k] \ (\hat{a}^\dagger_k)^{N-1}|0} \\&= \braket{0|(\hat{a}_k)^{N-1} (\hat{a}^\dagger_k)^{N-1}|0} + \braket{0|(\hat{a}_k)^{N-1} {\color{red} \hat{a}^\dagger_k \hat{a}_k} (\hat{a}^\dagger_k)^{N-1}|0} \\& {\color{red} \left( = \braket{0|(\hat{a}_k)^{N-1} (\hat{a}^\dagger_k)^{N-1}|0} + (N-1)\braket{0|(\hat{a}_k)^{N-1} (\hat{a}^\dagger_k)^{N-1}|0} \right)} \\&= I_{N-1} + \braket{0|(\hat{a}_k)^{N-1} \hat{a}^\dagger_k \ [\hat{I} + \hat{a}^\dagger_k \hat{a}_k] \ (\hat{a}^\dagger_k)^{N-2}|0} \\&= 2I_{N-1} + \braket{0|(\hat{a}_k)^{N-1} (\hat{a}^\dagger_k)^2 \hat{a}_k (\hat{a}^\dagger_k)^{N-2}|0} \\&= \cdots \\&= NI_{N-1} + \braket{0|(\hat{a}_k)^{N-1} (\hat{a}^\dagger_k)^N \hat{a}_k|0} \\&= NI_{N-1} + 0 = N(N-1)I_{N-2} = \cdots = N! \end{aligned} \tag{1.7.11} I N = ( ( a ^ k † ) N ∣ 0 ⟩ ) † ( ( a ^ k † ) N ∣ 0 ⟩ ) = ⟨ 0 ∣ ( a ^ k ) N ( a ^ k † ) N ∣ 0 ⟩ = ⟨ 0 ∣ ( a ^ k ) N − 1 a ^ k a ^ k † ( a ^ k † ) N − 1 ∣ 0 ⟩ = ⟨ 0 ∣ ( a ^ k ) N − 1 [ I ^ + a ^ k † a ^ k ] ( a ^ k † ) N − 1 ∣ 0 ⟩ = ⟨ 0 ∣ ( a ^ k ) N − 1 ( a ^ k † ) N − 1 ∣ 0 ⟩ + ⟨ 0 ∣ ( a ^ k ) N − 1 a ^ k † a ^ k ( a ^ k † ) N − 1 ∣ 0 ⟩ ( = ⟨ 0 ∣ ( a ^ k ) N − 1 ( a ^ k † ) N − 1 ∣ 0 ⟩ + ( N − 1 ) ⟨ 0 ∣ ( a ^ k ) N − 1 ( a ^ k † ) N − 1 ∣ 0 ⟩ ) = I N − 1 + ⟨ 0 ∣ ( a ^ k ) N − 1 a ^ k † [ I ^ + a ^ k † a ^ k ] ( a ^ k † ) N − 2 ∣ 0 ⟩ = 2 I N − 1 + ⟨ 0 ∣ ( a ^ k ) N − 1 ( a ^ k † ) 2 a ^ k ( a ^ k † ) N − 2 ∣ 0 ⟩ = ⋯ = N I N − 1 + ⟨ 0 ∣ ( a ^ k ) N − 1 ( a ^ k † ) N a ^ k ∣ 0 ⟩ = N I N − 1 + 0 = N ( N − 1 ) I N − 2 = ⋯ = N ! ( 1 . 7 . 1 1 )
小 tap:其中上式利用到了[ a ^ k , a ^ k † ] = I ^ [\hat{a}_k , \hat{a}^\dagger_k]=\hat{I} [ a ^ k , a ^ k † ] = I ^ 的对易关系,以及标红色部分其实可以直接用粒子数算符n ^ k = a ^ k † a ^ k \hat{n}_k=\hat{a}^\dagger_k \hat{a}_k n ^ k = a ^ k † a ^ k 来直接计算得出结果,但我这里写得详细点,其实也就是推导了一下为什么粒子数算符可以得到某一个态的粒子数,因为上面我写粒子数算符相关内容时并没有给推导,这里就补充一下啦! 因此我们得到归一化因子D D D 应该为1 N ! \frac{1}{\sqrt{N!}} N ! 1 ,所以我们有:
∣ n k = N ⟩ = 1 N ! ( a ^ k † ) N ∣ 0 ⟩ (1.7.12) \ket{n_k=N} = \frac{1}{\sqrt{N!}} (\hat{a}^\dagger_k)^N \ket{0} \tag{1.7.12} ∣ n k = N ⟩ = N ! 1 ( a ^ k † ) N ∣ 0 ⟩ ( 1 . 7 . 1 2 )
\quad 对于上式我们进一步做探讨有:
a ^ k † ∣ n k = N ⟩ = 1 N ! ( a ^ k † ) N + 1 ∣ 0 ⟩ = ( N + 1 ) ! N ! ∣ n k = N + 1 ⟩ = N + 1 ∣ n k = N + 1 ⟩ (1.7.13) \hat{a}^\dagger_k \ket{n_k=N} = \frac{1}{\sqrt{N!}} (\hat{a}^\dagger_k)^{N+1} \ket{0} = \frac{\sqrt{(N+1)!}}{\sqrt{N!}} \ket{n_k=N+1} =\sqrt{N+1} \ket{n_k=N+1} \tag{1.7.13} a ^ k † ∣ n k = N ⟩ = N ! 1 ( a ^ k † ) N + 1 ∣ 0 ⟩ = N ! ( N + 1 ) ! ∣ n k = N + 1 ⟩ = N + 1 ∣ n k = N + 1 ⟩ ( 1 . 7 . 1 3 )
以及
a ^ k ∣ n k = N ⟩ = 1 N ! a ^ k ( a ^ k † ) N ∣ 0 ⟩ = 1 N ! ( I ^ + a ^ k † a ^ k ) ( a ^ k † ) N − 1 ∣ 0 ⟩ = 1 N ! ( a ^ k † ) N − 1 ∣ 0 ⟩ + 1 N ! n ^ k ( a ^ k † ) N − 1 ∣ 0 ⟩ = 1 N ! ( a ^ k † ) N − 1 ∣ 0 ⟩ + N − 1 N ! ( a ^ k † ) N − 1 ∣ 0 ⟩ = N ( N − 1 ) ! ( a ^ k † ) N − 1 ∣ 0 ⟩ = N ∣ n k = N − 1 ⟩ (1.7.14) \begin{aligned} \hat{a}_k \ket{n_k=N} &= \frac{1}{\sqrt{N!}} \hat{a}_k (\hat{a}^\dagger_k)^N \ket{0} = \frac{1}{\sqrt{N!}} (\hat{I} + \hat{a}^\dagger_k\hat{a}_k) (\hat{a}^\dagger_k)^{N-1} \ket{0} \\&= \frac{1}{\sqrt{N!}} (\hat{a}^\dagger_k)^{N-1} \ket{0} + \frac{1}{\sqrt{N!}} \hat{n}_k (\hat{a}^\dagger_k)^{N-1} \ket{0} \\&= \frac{1}{\sqrt{N!}} (\hat{a}^\dagger_k)^{N-1} \ket{0} + \frac{N-1}{\sqrt{N!}} (\hat{a}^\dagger_k)^{N-1} \ket{0} \\&= \frac{\sqrt{N}}{\sqrt{(N-1)!}} (\hat{a}^\dagger_k)^{N-1} \ket{0} = \sqrt{N} \ket{n_k=N-1} \end{aligned} \tag{1.7.14} a ^ k ∣ n k = N ⟩ = N ! 1 a ^ k ( a ^ k † ) N ∣ 0 ⟩ = N ! 1 ( I ^ + a ^ k † a ^ k ) ( a ^ k † ) N − 1 ∣ 0 ⟩ = N ! 1 ( a ^ k † ) N − 1 ∣ 0 ⟩ + N ! 1 n ^ k ( a ^ k † ) N − 1 ∣ 0 ⟩ = N ! 1 ( a ^ k † ) N − 1 ∣ 0 ⟩ + N ! N − 1 ( a ^ k † ) N − 1 ∣ 0 ⟩ = ( N − 1 ) ! N ( a ^ k † ) N − 1 ∣ 0 ⟩ = N ∣ n k = N − 1 ⟩ ( 1 . 7 . 1 4 )
总结上面两式,也就是说产生和湮灭算符作用在粒子数表象的波函数上时,有如下结果:
a ^ k † ∣ n k = N ⟩ = N + 1 ∣ n k = N + 1 ⟩ a ^ k ∣ n k = N ⟩ = N ∣ n k = N − 1 ⟩ (1.7.15) \begin{array}{|c|} \hline \\ \hat{a}^\dagger_k \ket{n_k=N} = \sqrt{N+1} \ket{n_k=N+1} \\ \\ \hat{a}_k \ket{n_k=N} = \sqrt{N} \ket{n_k=N-1} \\ \\ \hline \end{array} \tag{1.7.15} a ^ k † ∣ n k = N ⟩ = N + 1 ∣ n k = N + 1 ⟩ a ^ k ∣ n k = N ⟩ = N ∣ n k = N − 1 ⟩ ( 1 . 7 . 1 5 )
\quad 综上,再进行一下推广,不难得到一个多体玻色粒子态可以写作:
∣ n k 1 , n k 2 , ⋯ , n k N ⟩ = 1 n k 1 ! n k 2 ! ⋯ n k N ! ( a ^ k 1 † ) n k 1 ( a ^ k 2 † ) n k 2 ⋯ ( a ^ k N † ) n k N ∣ 0 ⟩ (1.7.16) \ket{n_{k_1},n_{k_2},\cdots,n_{k_N}} = \frac{1}{\sqrt{n_{k_1}!n_{k_2}!\cdots n_{k_N}!}} (\hat{a}^\dagger_{k_1})^{n_{k_1}} (\hat{a}^\dagger_{k_2})^{n_{k_2}} \cdots (\hat{a}^\dagger_{k_N})^{n_{k_N}} \ket{0} \tag{1.7.16} ∣ n k 1 , n k 2 , ⋯ , n k N ⟩ = n k 1 ! n k 2 ! ⋯ n k N ! 1 ( a ^ k 1 † ) n k 1 ( a ^ k 2 † ) n k 2 ⋯ ( a ^ k N † ) n k N ∣ 0 ⟩ ( 1 . 7 . 1 6 )
# 玻色子单体和二体算符的表达式# 单体算符\quad 在一个多体量子体系中,许多力学量可以被写成下面的形式:
F ^ = ∑ i = 1 N f ^ ( q i ) (1.8.1) \hat{F} = \sum^N_{i=1} \hat{f}(q_i) \tag{1.8.1} F ^ = i = 1 ∑ N f ^ ( q i ) ( 1 . 8 . 1 )
这种能够表示成 N 个单粒子算符f ^ ( q i ) ( i = 1 , 2 , ⋯ , N ) \hat{f}(q_i)(i=1,2,\cdots,N) f ^ ( q i ) ( i = 1 , 2 , ⋯ , N ) 之和的,被称为单体算符。例如粒子系的总动量,总角动量,总动能,总粒子数。另外一提,其实 (1.8.1) 式如果写完整点应该是:
F ^ = ∑ i = 1 N I ^ ( q 1 ) ⊗ ⋯ ⊗ f ^ ( q i ) ⊗ ⋯ ⊗ I ^ ( q N ) (1.8.2) \hat{F} = \sum^N_{i=1} \hat{I}(q_1) \otimes \cdots \otimes \hat{f}(q_i) \otimes \cdots \otimes \hat{I}(q_N) \tag{1.8.2} F ^ = i = 1 ∑ N I ^ ( q 1 ) ⊗ ⋯ ⊗ f ^ ( q i ) ⊗ ⋯ ⊗ I ^ ( q N ) ( 1 . 8 . 2 )
\quad 对于这类单体算符,我们有等式:
⟨ ψ n k 1 , ⋯ , n k N ∣ F ^ ∣ ψ n k 1 ′ , ⋯ , n k N ′ ⟩ = N ⟨ ψ n k 1 , ⋯ , n k N ∣ f ^ ( q 1 ) ∣ ψ n k 1 ′ , ⋯ , n k N ′ ⟩ 或者说写得完整点 = N ⟨ ψ n k 1 , ⋯ , n k N ∣ f ^ ( q 1 ) ⊗ I ^ ( q 2 ) ⊗ ⋯ ⊗ I ^ ( q N ) ∣ ψ n k 1 ′ , ⋯ , n k N ′ ⟩ (1.8.3) \begin{aligned} \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{F}|\psi_{n'_{k_1},\cdots,n'_{k_N}}} &= N\braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{f}(q_1)|\psi_{n'_{k_1},\cdots,n'_{k_N}}} \\ \text{或者说写得完整点} &= N\braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{f}(q_1) \otimes \hat{I}(q_2) \otimes \cdots \otimes \hat{I}(q_N)|\psi_{n'_{k_1},\cdots,n'_{k_N}}} \end{aligned} \tag{1.8.3} ⟨ ψ n k 1 , ⋯ , n k N ∣ F ^ ∣ ψ n k 1 ′ , ⋯ , n k N ′ ⟩ 或者说写得完整点 = N ⟨ ψ n k 1 , ⋯ , n k N ∣ f ^ ( q 1 ) ∣ ψ n k 1 ′ , ⋯ , n k N ′ ⟩ = N ⟨ ψ n k 1 , ⋯ , n k N ∣ f ^ ( q 1 ) ⊗ I ^ ( q 2 ) ⊗ ⋯ ⊗ I ^ ( q N ) ∣ ψ n k 1 ′ , ⋯ , n k N ′ ⟩ ( 1 . 8 . 3 )
上式不给证明了。因为写起来很麻烦,但其实不难理解。注意,这一式子对于费米子同样成立 。顺便一提,上式中的ψ n k 1 , ⋯ , n k N \psi_{n_{k_1},\cdots,n_{k_N}} ψ n k 1 , ⋯ , n k N 与我们上面的写法有点不一样,它其实表示的是如同 (1.4.17) 式的一个全同玻色子体系的波函数:
ψ n k 1 , ⋯ , n k N = ψ k 1 , ⋯ , k 1 ⏟ n k 1 个 , k 2 , ⋯ , k 2 ⏟ n k 2 个 , ⋯ , k N , ⋯ , k N ⏟ n k N 个 S ( q 1 , q 2 , ⋯ , q N ) 要满足: n k 1 + n k 2 + ⋯ + n k N = N (1.8.4) \psi_{n_{k_1},\cdots,n_{k_N}} = \psi^S_{\underbrace{k_1,\cdots,k_1}_{n_{k_1}个},\underbrace{k_2,\cdots,k_2}_{n_{k_2}个},\cdots,\underbrace{k_N,\cdots,k_N}_{n_{k_N}个}} (q_1,q_2,\cdots,q_N) \\ 要满足:n_{k_1}+n_{k_2}+\cdots+n_{k_N}=N \tag{1.8.4} ψ n k 1 , ⋯ , n k N = ψ n k 1 个 k 1 , ⋯ , k 1 , n k 2 个 k 2 , ⋯ , k 2 , ⋯ , n k N 个 k N , ⋯ , k N S ( q 1 , q 2 , ⋯ , q N ) 要 满 足 : n k 1 + n k 2 + ⋯ + n k N = N ( 1 . 8 . 4 )
\quad
\quad 接下来,我们先来说一下我们要干些什么。我们在量子力学里面也学过,一个算符可以利用一组正交完备的基底波函数写成矩阵的形式。而对于多体量子体系来说也如此,一组ψ n k 1 , ⋯ , n k N \psi_{n_{k_1},\cdots,n_{k_N}} ψ n k 1 , ⋯ , n k N 也能构成一个正交完备的基底,一个算符也能利用它写成矩阵形式,矩阵的各个矩阵元如下:
⟨ ψ n k 1 ′ , ⋯ , n k N ′ ∣ F ^ ∣ ψ n k 1 , ⋯ , n k N ⟩ \braket{\psi_{n'_{k_1},\cdots,n'_{k_N}}|\hat{F}|\psi_{n_{k_1},\cdots,n_{k_N}}} ⟨ ψ n k 1 ′ , ⋯ , n k N ′ ∣ F ^ ∣ ψ n k 1 , ⋯ , n k N ⟩
而在许多量子力学的研究工作中,许多都涉及到这种矩阵元的计算,如果我们用波函数的坐标表象来计算多体量子体系的话,将会是十分麻烦的。但如果用粒子数表象的话,事情就会简单很多。这就是为什么引入粒子数表象的一个原因:它能使计算矩阵元变得十分容易。下面我们就来验证,在粒子数表象中,一个单体算符F ^ \hat{F} F ^ 可以被写成:
F ^ = ∑ α , β f α , β a ^ α † a ^ β (1.8.5) \hat{F} = \sum_{\alpha,\beta} f_{\alpha,\beta} \hat{a}^\dagger_\alpha \hat{a}_\beta \tag{1.8.5} F ^ = α , β ∑ f α , β a ^ α † a ^ β ( 1 . 8 . 5 )
其中:
f α , β = ⟨ φ α ∣ f ^ ∣ φ β ⟩ (1.8.6) f_{\alpha,\beta} = \braket{\varphi_\alpha|\hat{f}|\varphi_\beta} \tag{1.8.6} f α , β = ⟨ φ α ∣ f ^ ∣ φ β ⟩ ( 1 . 8 . 6 )
\quad 为了验证,我们先用波函数的坐标表象来计算单体算符的各个矩阵元。对于单体算符来说,只有两种非零矩阵元:
一种是⟨ ψ n k 1 , ⋯ , n k N ∣ F ^ ∣ ψ n k 1 , ⋯ , n k N ⟩ = N ⟨ ψ n k 1 , ⋯ , n k N ∣ f ( q 1 ) ^ ∣ ψ n k 1 , ⋯ , n k N ⟩ \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{F}|\psi_{n_{k_1},\cdots,n_{k_N}}}=N\braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{f(q_1)}|\psi_{n_{k_1},\cdots,n_{k_N}}} ⟨ ψ n k 1 , ⋯ , n k N ∣ F ^ ∣ ψ n k 1 , ⋯ , n k N ⟩ = N ⟨ ψ n k 1 , ⋯ , n k N ∣ f ( q 1 ) ^ ∣ ψ n k 1 , ⋯ , n k N ⟩ 的对角矩阵元。 ⟨ ψ n k 1 , ⋯ , n k N ∣ F ^ ∣ ψ n k 1 , ⋯ , n k N ⟩ = N ⟨ ψ n k 1 , ⋯ , n k N ∣ f ( q 1 ) ^ ∣ ψ n k 1 , ⋯ , n k N ⟩ = N ⟨ n k 1 ! ⋯ n k N ! N ! ∑ { P ^ } φ k 1 ( q p ( 1 ) ) ⊗ ⋯ ⏟ n k 1 ⊗ ⋯ ⊗ φ k N ( q p ( N ) ) ⊗ ⋯ ⏟ n k N ∣ f ( q 1 ) ^ ∣ n k 1 ! ⋯ n k N ! N ! ∑ { P ^ } φ k 1 ( q p ( 1 ) ) ⊗ ⋯ ⏟ n k 1 ⊗ ⋯ ⊗ φ k N ( q p ( N ) ) ⊗ ⋯ ⏟ n k N ⟩ = N n k 1 ! ⋯ n k N ! N ! ∑ { P ^ } ∑ { P ′ ^ } ⟨ φ k 1 ( q p ( 1 ) ) ⊗ ⋯ ⏟ n k 1 ⊗ ⋯ ⊗ φ k N ( q p ( N ) ) ⊗ ⋯ ⏟ n k N ∣ f ^ ( q 1 ) ∣ φ k 1 ( q p ( 1 ) ′ ) ⊗ ⋯ ⏟ n k 1 ⊗ ⋯ ⊗ φ k N ( q p ( N ) ′ ) ⊗ ⋯ ⏟ n k N ⟩ = N n k 1 ! ⋯ n k N ! N ! ∑ { P ^ } ⟨ φ k 1 ( q p ( 1 ) ) ⊗ ⋯ ⏟ n k 1 ⊗ ⋯ ⊗ φ k N ( q p ( N ) ) ⊗ ⋯ ⏟ n k N ∣ f ^ ( q 1 ) ∣ φ k 1 ( q p ( 1 ) ) ⊗ ⋯ ⏟ n k 1 ⊗ ⋯ ⊗ φ k N ( q p ( N ) ) ⊗ ⋯ ⏟ n k N ⟩ = N n k 1 ! ⋯ n k N ! N ! ∑ k i ⟨ φ k i ∣ f ^ ∣ φ k i ⟩ ∑ { P ^ } ⟨ φ k 1 ( q p 1 ) ∣ φ k 1 ( q p 1 ) ⟩ ⊗ ⋯ ⏟ n k 1 ⊗ ⟨ φ k 1 ( q p i ) ∣ φ k 1 ( q p i ) ⟩ ⊗ ⋯ ⏟ n k i − 1 ⊗ ⟨ φ k N ( q p N ) ∣ φ k 1 ( q p N ) ⟩ ⊗ ⋯ ⏟ n k N = N n k 1 ! ⋯ n k N ! N ! ∑ k i ⟨ φ k i ∣ f ^ ∣ φ k i ⟩ ( N − 1 ) ! n k 1 ! ⋯ ( n k i − 1 ) ! ⋯ n k N ! = ∑ k i n k i ⟨ φ k i ∣ f ^ ∣ φ k i ⟩ = ∑ k i n k i f k i k i (1.8.7) \begin{aligned} & \quad \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{F}|\psi_{n_{k_1},\cdots,n_{k_N}}} \\&= N \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{f(q_1)}|\psi_{n_{k_1},\cdots,n_{k_N}}} \\&= N \bra{\sqrt{\frac{n_{k_1}! \cdots n_{k_N}!}{N!}} \sum_{\{\hat{P}\}} \underbrace{\varphi_{k_1}(q_{p_{(1)}})\otimes\cdots}_{n_{k_1}} \otimes \cdots \otimes\underbrace{\varphi_{k_N}(q_{p_{(N)}})\otimes\cdots}_{n_{k_N}}} \hat{f(q_1)} \\& \qquad \qquad \ket{\sqrt{\frac{n_{k_1}! \cdots n_{k_N}!}{N!}} \sum_{\{\hat{P}\}} \underbrace{\varphi_{k_1}(q_{p_{(1)}})\otimes\cdots}_{n_{k_1}} \otimes \cdots \otimes\underbrace{\varphi_{k_N}(q_{p_{(N)}})\otimes\cdots}_{n_{k_N}}} \\&= N \frac{n_{k_1}! \cdots n_{k_N}!}{N!} \sum_{\{\hat{P}\}} \sum_{\{\hat{P'}\}} \bra{\underbrace{\varphi_{k_1}(q_{p_{(1)}})\otimes\cdots}_{n_{k_1}} \otimes \cdots \otimes\underbrace{\varphi_{k_N}(q_{p_{(N)}})\otimes\cdots}_{n_{k_N}}} \hat{f}(q_1) \\& \qquad \qquad \ket{\underbrace{\varphi_{k_1}(q_{p'_{(1)}})\otimes\cdots}_{n_{k_1}} \otimes \cdots \otimes\underbrace{\varphi_{k_N}(q_{p'_{(N)}})\otimes\cdots}_{n_{k_N}}} \\&= N \frac{n_{k_1}! \cdots n_{k_N}!}{N!} \sum_{\{\hat{P}\}} \bra{\underbrace{\varphi_{k_1}(q_{p_{(1)}})\otimes\cdots}_{n_{k_1}} \otimes \cdots \otimes\underbrace{\varphi_{k_N}(q_{p_{(N)}})\otimes\cdots}_{n_{k_N}}} \hat{f}(q_1) \\& \qquad \qquad \ket{\underbrace{\varphi_{k_1}(q_{p_{(1)}})\otimes\cdots}_{n_{k_1}} \otimes \cdots \otimes\underbrace{\varphi_{k_N}(q_{p_{(N)}})\otimes\cdots}_{n_{k_N}}} \\&= N \frac{n_{k_1}! \cdots n_{k_N}!}{N!} \sum_{k_i} \braket{\varphi_{k_i}|\hat{f}|\varphi_{k_i}} \sum_{\{\hat{P}\}} \underbrace{\braket{\varphi_{k_1}(q_{p_1})|\varphi_{k_1}(q_{p_1})} \otimes \cdots}_{n_{k_1}} \otimes \\& \\& \qquad \qquad \underbrace{\braket{\varphi_{k_1}(q_{p_i})|\varphi_{k_1}(q_{p_i})} \otimes \cdots}_{n_{k_i}-1} \otimes \underbrace{\braket{\varphi_{k_N}(q_{p_N})|\varphi_{k_1}(q_{p_N})} \otimes \cdots}_{n_{k_N}} \\&= N \frac{n_{k_1}! \cdots n_{k_N}!}{N!} \sum_{k_i} \braket{\varphi_{k_i}|\hat{f}|\varphi_{k_i}} \frac{(N-1)!}{n_{k_1}! \cdots (n_{k_i}-1)! \cdots n_{k_N}!} \\&= \sum_{k_i} n_{k_i} \braket{\varphi_{k_i}|\hat{f}|\varphi_{k_i}} = \sum_{k_i} n_{k_i} f_{k_i k_i} \end{aligned} \tag{1.8.7} ⟨ ψ n k 1 , ⋯ , n k N ∣ F ^ ∣ ψ n k 1 , ⋯ , n k N ⟩ = N ⟨ ψ n k 1 , ⋯ , n k N ∣ f ( q 1 ) ^ ∣ ψ n k 1 , ⋯ , n k N ⟩ = N ⟨ N ! n k 1 ! ⋯ n k N ! { P ^ } ∑ n k 1 φ k 1 ( q p ( 1 ) ) ⊗ ⋯ ⊗ ⋯ ⊗ n k N φ k N ( q p ( N ) ) ⊗ ⋯ ∣ f ( q 1 ) ^ ∣ N ! n k 1 ! ⋯ n k N ! { P ^ } ∑ n k 1 φ k 1 ( q p ( 1 ) ) ⊗ ⋯ ⊗ ⋯ ⊗ n k N φ k N ( q p ( N ) ) ⊗ ⋯ ⟩ = N N ! n k 1 ! ⋯ n k N ! { P ^ } ∑ { P ′ ^ } ∑ ⟨ n k 1 φ k 1 ( q p ( 1 ) ) ⊗ ⋯ ⊗ ⋯ ⊗ n k N φ k N ( q p ( N ) ) ⊗ ⋯ ∣ f ^ ( q 1 ) ∣ n k 1 φ k 1 ( q p ( 1 ) ′ ) ⊗ ⋯ ⊗ ⋯ ⊗ n k N φ k N ( q p ( N ) ′ ) ⊗ ⋯ ⟩ = N N ! n k 1 ! ⋯ n k N ! { P ^ } ∑ ⟨ n k 1 φ k 1 ( q p ( 1 ) ) ⊗ ⋯ ⊗ ⋯ ⊗ n k N φ k N ( q p ( N ) ) ⊗ ⋯ ∣ f ^ ( q 1 ) ∣ n k 1 φ k 1 ( q p ( 1 ) ) ⊗ ⋯ ⊗ ⋯ ⊗ n k N φ k N ( q p ( N ) ) ⊗ ⋯ ⟩ = N N ! n k 1 ! ⋯ n k N ! k i ∑ ⟨ φ k i ∣ f ^ ∣ φ k i ⟩ { P ^ } ∑ n k 1 ⟨ φ k 1 ( q p 1 ) ∣ φ k 1 ( q p 1 ) ⟩ ⊗ ⋯ ⊗ n k i − 1 ⟨ φ k 1 ( q p i ) ∣ φ k 1 ( q p i ) ⟩ ⊗ ⋯ ⊗ n k N ⟨ φ k N ( q p N ) ∣ φ k 1 ( q p N ) ⟩ ⊗ ⋯ = N N ! n k 1 ! ⋯ n k N ! k i ∑ ⟨ φ k i ∣ f ^ ∣ φ k i ⟩ n k 1 ! ⋯ ( n k i − 1 ) ! ⋯ n k N ! ( N − 1 ) ! = k i ∑ n k i ⟨ φ k i ∣ f ^ ∣ φ k i ⟩ = k i ∑ n k i f k i k i ( 1 . 8 . 7 )
第二种情况是只相差一个单粒子态的矩阵元⟨ ψ ⋯ , n k i + 1 , ⋯ , n k j − 1 , ⋯ ∣ F ^ ∣ ψ ⋯ , n k i , ⋯ , n k j , ⋯ ⟩ \braket{\psi_{\cdots,n_{k_i}+1,\cdots,n_{k_j}-1,\cdots}|\hat{F}|\psi_{\cdots,n_{k_i},\cdots,n_{k_j},\cdots}} ⟨ ψ ⋯ , n k i + 1 , ⋯ , n k j − 1 , ⋯ ∣ F ^ ∣ ψ ⋯ , n k i , ⋯ , n k j , ⋯ ⟩ 。 ⟨ ψ ⋯ , n k i + 1 , ⋯ , n k j − 1 , ⋯ ∣ F ^ ∣ ψ ⋯ , n k i , ⋯ , n k j , ⋯ ⟩ = N ⟨ ψ ⋯ , n k i + 1 , ⋯ , n k j − 1 , ⋯ ∣ f ^ ( q 1 ) ∣ ψ ⋯ , n k i , ⋯ , n k j , ⋯ ⟩ = N ⟨ ⋯ ( n k i + 1 ) ! ⋯ ( n k j − 1 ) ! ⋯ N ! ∑ { P ^ } ⋯ φ k i ( q p i ) ⊗ ⋯ ⏟ n k i + 1 ⊗ φ k j ( q p j ) ⊗ ⋯ ⏟ n k j − 1 ⊗ ⋯ ∣ f ^ ( q 1 ) ∣ ⋯ n k i ! ⋯ n k j ! ⋯ N ! ∑ { P ^ } ⋯ φ k i ( q p i ) ⊗ ⋯ ⏟ n k i ⊗ φ k j ( q p j ) ⊗ ⋯ ⏟ n k j ⊗ ⋯ ⟩ = N ⋯ n k i ! ⋯ ( n k j − 1 ) ! ⋯ N ! ( n k i + 1 ) n k j ∑ { P ^ } ∑ { P ′ ^ } ⟨ ⋯ φ k i ( q p i ) ⊗ ⋯ ⏟ n k i + 1 ⊗ φ k j ( q p j ) ⊗ ⋯ ⏟ n k j − 1 ⊗ ⋯ ∣ f ^ ( q 1 ) ∣ ⋯ φ k i ( q p i ′ ) ⊗ ⋯ ⏟ n k i ⊗ φ k j ( q p j ′ ) ⊗ ⋯ ⏟ n k j ⊗ ⋯ ⟩ = N ⋯ n k i ! ⋯ ( n k j − 1 ) ! ⋯ N ! ( n k i + 1 ) n k j ⟨ φ k i ∣ f ^ ∣ φ k j ⟩ ∑ { P ^ } ⋯ ⟨ φ k i ( q p i ) ∣ φ k i ( q p i ) ⟩ ⊗ ⋯ ⏟ n k i ⋯ ⊗ ⟨ φ k j ( q p j ) ∣ φ k j ( q p j ) ⟩ ⊗ ⋯ ⏟ n k j − 1 = N ⋯ n k i ! ⋯ ( n k j − 1 ) ! ⋯ N ! ( n k i + 1 ) n k j ⟨ φ k i ∣ f ^ ∣ φ k j ⟩ ( N − 1 ) ! ⋯ n k i ! ⋯ ( n k j − 1 ) ! = ( n k i + 1 ) n k j ⟨ φ k i ∣ f ^ ∣ φ k j ⟩ = ( n k i + 1 ) n k j f k i k j (1.8.8) \begin{aligned} & \quad \braket{\psi_{\cdots,n_{k_i}+1,\cdots,n_{k_j}-1,\cdots}|\hat{F}|\psi_{\cdots,n_{k_i},\cdots,n_{k_j},\cdots}} \\&= N \braket{\psi_{\cdots,n_{k_i}+1,\cdots,n_{k_j}-1,\cdots}|\hat{f}(q_1)|\psi_{\cdots,n_{k_i},\cdots,n_{k_j},\cdots}} \\&= N \bra{\sqrt{\frac{\cdots (n_{k_i}+1)! \cdots (n_{k_j}-1)! \cdots}{N!}} \sum_{\{\hat{P}\}} \cdots \underbrace{\varphi_{k_i(q_{p_i})}\otimes\cdots}_{n_{k_i}+1} \otimes \underbrace{\varphi_{k_j(q_{p_j})}\otimes\cdots}_{n_{k_j}-1} \otimes \cdots} \hat{f}(q_1) \\& \qquad \qquad \ket{\sqrt{\frac{\cdots n_{k_i}! \cdots n_{k_j}! \cdots}{N!}} \sum_{\{\hat{P}\}} \cdots \underbrace{\varphi_{k_i(q_{p_i})}\otimes\cdots}_{n_{k_i}} \otimes \underbrace{\varphi_{k_j(q_{p_j})}\otimes\cdots}_{n_{k_j}} \otimes \cdots } \\&= N \frac{\cdots n_{k_i}! \cdots (n_{k_j}-1)! \cdots}{N!} \sqrt{(n_{k_i}+1)n_{k_j}} \sum_{\{\hat{P}\}} \sum_{\{\hat{P'}\}} \bra{\cdots \underbrace{\varphi_{k_i(q_{p_i})}\otimes\cdots}_{n_{k_i}+1} \otimes \underbrace{\varphi_{k_j(q_{p_j})}\otimes\cdots}_{n_{k_j}-1} \otimes \cdots} \\& \qquad \qquad \hat{f}(q_1) \ket{\cdots \underbrace{\varphi_{k_i(q_{p'_i})}\otimes\cdots}_{n_{k_i}} \otimes \underbrace{\varphi_{k_j(q_{p'_j})}\otimes\cdots}_{n_{k_j}} \otimes \cdots} \\&= N \frac{\cdots n_{k_i}! \cdots (n_{k_j}-1)! \cdots}{N!} \sqrt{(n_{k_i}+1)n_{k_j}} \braket{\varphi_{k_i}|\hat{f}|\varphi_{k_j}} \sum_{\{\hat{P}\}} \cdots \underbrace{\braket{\varphi_{k_i}(q_{p_i})|\varphi_{k_i}(q_{p_i})} \otimes \cdots}_{n_{k_i}} \\& \qquad \qquad \cdots \otimes \underbrace{\braket{\varphi_{k_j}(q_{p_j})|\varphi_{k_j}(q_{p_j})} \otimes \cdots}_{n_{k_j}-1} \\&= N \frac{\cdots n_{k_i}! \cdots (n_{k_j}-1)! \cdots}{N!} \sqrt{(n_{k_i}+1)n_{k_j}} \braket{\varphi_{k_i}|\hat{f}|\varphi_{k_j}} \frac{(N-1)!}{\cdots n_{k_i}! \cdots (n_{k_j}-1)! } \\&= \sqrt{(n_{k_i}+1)n_{k_j}} \braket{\varphi_{k_i}|\hat{f}|\varphi_{k_j}} = \sqrt{(n_{k_i}+1)n_{k_j}} f_{k_i k_j} \end{aligned} \tag{1.8.8} ⟨ ψ ⋯ , n k i + 1 , ⋯ , n k j − 1 , ⋯ ∣ F ^ ∣ ψ ⋯ , n k i , ⋯ , n k j , ⋯ ⟩ = N ⟨ ψ ⋯ , n k i + 1 , ⋯ , n k j − 1 , ⋯ ∣ f ^ ( q 1 ) ∣ ψ ⋯ , n k i , ⋯ , n k j , ⋯ ⟩ = N ⟨ N ! ⋯ ( n k i + 1 ) ! ⋯ ( n k j − 1 ) ! ⋯ { P ^ } ∑ ⋯ n k i + 1 φ k i ( q p i ) ⊗ ⋯ ⊗ n k j − 1 φ k j ( q p j ) ⊗ ⋯ ⊗ ⋯ ∣ f ^ ( q 1 ) ∣ N ! ⋯ n k i ! ⋯ n k j ! ⋯ { P ^ } ∑ ⋯ n k i φ k i ( q p i ) ⊗ ⋯ ⊗ n k j φ k j ( q p j ) ⊗ ⋯ ⊗ ⋯ ⟩ = N N ! ⋯ n k i ! ⋯ ( n k j − 1 ) ! ⋯ ( n k i + 1 ) n k j { P ^ } ∑ { P ′ ^ } ∑ ⟨ ⋯ n k i + 1 φ k i ( q p i ) ⊗ ⋯ ⊗ n k j − 1 φ k j ( q p j ) ⊗ ⋯ ⊗ ⋯ ∣ f ^ ( q 1 ) ∣ ⋯ n k i φ k i ( q p i ′ ) ⊗ ⋯ ⊗ n k j φ k j ( q p j ′ ) ⊗ ⋯ ⊗ ⋯ ⟩ = N N ! ⋯ n k i ! ⋯ ( n k j − 1 ) ! ⋯ ( n k i + 1 ) n k j ⟨ φ k i ∣ f ^ ∣ φ k j ⟩ { P ^ } ∑ ⋯ n k i ⟨ φ k i ( q p i ) ∣ φ k i ( q p i ) ⟩ ⊗ ⋯ ⋯ ⊗ n k j − 1 ⟨ φ k j ( q p j ) ∣ φ k j ( q p j ) ⟩ ⊗ ⋯ = N N ! ⋯ n k i ! ⋯ ( n k j − 1 ) ! ⋯ ( n k i + 1 ) n k j ⟨ φ k i ∣ f ^ ∣ φ k j ⟩ ⋯ n k i ! ⋯ ( n k j − 1 ) ! ( N − 1 ) ! = ( n k i + 1 ) n k j ⟨ φ k i ∣ f ^ ∣ φ k j ⟩ = ( n k i + 1 ) n k j f k i k j ( 1 . 8 . 8 )
用以上方法计算,我们可以算出相差两个或以上单粒子态的矩阵元一定为零。 \quad 上面我们都是用坐标表象来计算的,哪怕只是算了两个式子,也花费了我许多时间,可见这样是麻烦的。但如果我们用粒子数表象来计算,情况会简单许多。我们利用 (1.8.5) 式,对于第一种的对角矩阵可得:
⟨ n k 1 , n k 2 , ⋯ , n k N ∣ F ^ ∣ n k 1 , n k 2 , ⋯ , n k N ⟩ = ⟨ n k 1 , n k 2 , ⋯ , n k N ∣ ∑ α , β f α β a ^ α † a ^ β ∣ n k 1 , n k 2 , ⋯ , n k N ⟩ = ∑ α , β f α β ⟨ n k 1 , n k 2 , ⋯ , n k N ∣ a ^ α † a ^ β ∣ n k 1 , n k 2 , ⋯ , n k N ⟩ = ∑ k i f k i k i ⟨ n k 1 , n k 2 , ⋯ , n k N ∣ n ^ k i ∣ n k 1 , n k 2 , ⋯ , n k N ⟩ = ∑ k i n k i f k i k i (1.8.9) \begin{aligned} & \braket{n_{k_1},n_{k_2},\cdots,n_{k_N}|\hat{F}|n_{k_1},n_{k_2},\cdots,n_{k_N}} \\=& \braket{n_{k_1},n_{k_2},\cdots,n_{k_N}|\sum_{\alpha,\beta}f_{\alpha\beta}\hat{a}^\dagger_\alpha\hat{a}_\beta|n_{k_1},n_{k_2},\cdots,n_{k_N}} \\=& \sum_{\alpha,\beta}f_{\alpha\beta} \braket{n_{k_1},n_{k_2},\cdots,n_{k_N}|\hat{a}^\dagger_\alpha\hat{a}_\beta|n_{k_1},n_{k_2},\cdots,n_{k_N}} \\=& \sum_{k_i} f_{k_ik_i} \braket{n_{k_1},n_{k_2},\cdots,n_{k_N}|\hat{n}_{k_i}|n_{k_1},n_{k_2},\cdots,n_{k_N}} \\=& \sum_{k_i} n_{k_i} f_{k_ik_i} \end{aligned} \tag{1.8.9} = = = = ⟨ n k 1 , n k 2 , ⋯ , n k N ∣ F ^ ∣ n k 1 , n k 2 , ⋯ , n k N ⟩ ⟨ n k 1 , n k 2 , ⋯ , n k N ∣ α , β ∑ f α β a ^ α † a ^ β ∣ n k 1 , n k 2 , ⋯ , n k N ⟩ α , β ∑ f α β ⟨ n k 1 , n k 2 , ⋯ , n k N ∣ a ^ α † a ^ β ∣ n k 1 , n k 2 , ⋯ , n k N ⟩ k i ∑ f k i k i ⟨ n k 1 , n k 2 , ⋯ , n k N ∣ n ^ k i ∣ n k 1 , n k 2 , ⋯ , n k N ⟩ k i ∑ n k i f k i k i ( 1 . 8 . 9 )
对于第二种只相差一个单粒子态的矩阵元有:
⟨ ⋯ , n k i + 1 , ⋯ , n k j − 1 , ⋯ ∣ F ^ ∣ ⋯ , n k i , ⋯ , n k j , ⋯ ⟩ = ∑ α , β f α β ⟨ ⋯ , n k i + 1 , ⋯ , n k j − 1 , ⋯ ∣ a ^ α † a ^ β ∣ ⋯ , n k i , ⋯ , n k j , ⋯ ⟩ = ∑ α , β f α β ( n k i + 1 ) n k j δ α , k i δ β , k j = ( n k i + 1 ) n k j f k i k j (1.8.10) \begin{aligned} & \braket{\cdots,n_{k_i}+1,\cdots,n_{k_j}-1,\cdots|\hat{F}|\cdots,n_{k_i},\cdots,n_{k_j},\cdots} \\=& \sum_{\alpha,\beta}f_{\alpha\beta} \braket{\cdots,n_{k_i}+1,\cdots,n_{k_j}-1,\cdots|\hat{a}^\dagger_\alpha\hat{a}_\beta|\cdots,n_{k_i},\cdots,n_{k_j},\cdots} \\=& \sum_{\alpha,\beta}f_{\alpha\beta} \sqrt{(n_{k_i}+1)n_{k_j}} \delta_{\alpha,k_i} \delta_{\beta,k_j} = \sqrt{(n_{k_i}+1)n_{k_j}} f_{k_ik_j} \end{aligned} \tag{1.8.10} = = ⟨ ⋯ , n k i + 1 , ⋯ , n k j − 1 , ⋯ ∣ F ^ ∣ ⋯ , n k i , ⋯ , n k j , ⋯ ⟩ α , β ∑ f α β ⟨ ⋯ , n k i + 1 , ⋯ , n k j − 1 , ⋯ ∣ a ^ α † a ^ β ∣ ⋯ , n k i , ⋯ , n k j , ⋯ ⟩ α , β ∑ f α β ( n k i + 1 ) n k j δ α , k i δ β , k j = ( n k i + 1 ) n k j f k i k j ( 1 . 8 . 1 0 )
至此,我们成功验证了 (1.8.5) 式。且也能深刻地体会到,上面两种方法计算矩阵元 (坐标表象和粒子数表象),明显是后者更方便简洁!
# 二体算符\quad 当讨论粒子之间的相互作用势时,我们就会遇到所谓的两体算符:
G ^ = ∑ i < j g ^ ( q i , q j ) (1.8.11) \hat{G} = \sum_{i<j} \hat{g}(q_i,q_j) \tag{1.8.11} G ^ = i < j ∑ g ^ ( q i , q j ) ( 1 . 8 . 1 1 )
由于一般有g ^ ( q i , q j ) = g ^ ( q j , q i ) \hat{g}(q_i,q_j)=\hat{g}(q_j,q_i) g ^ ( q i , q j ) = g ^ ( q j , q i ) ,因此上式种的求和∑ i < j \sum_{i<j} ∑ i < j 代表着不重复 i,j 的求和。比如说假若有 N 个粒子,那是上面一共有C N 2 = N ( N − 1 ) 2 C_N^2=\frac{N(N-1)}{2} C N 2 = 2 N ( N − 1 ) 项的求和。最常见的一种二体算符是电子之间的相互作用势 (当然电子是费米子,而不是玻色子):
V ( q 1 , q 2 , ⋯ , q N ) = ∑ i < j e 2 ∣ r ⃗ i − r ⃗ j ∣ (1.8.12) V(q_1,q_2,\cdots,q_N) = \sum_{i<j} \frac{e^2}{|\vec{r}_i-\vec{r}_j|} \tag{1.8.12} V ( q 1 , q 2 , ⋯ , q N ) = i < j ∑ ∣ r i − r j ∣ e 2 ( 1 . 8 . 1 2 )
\quad 当然,上面两式的这种写法也是默认简化了的。如果想要完整地写成直积符号的表达方法,我下面就用我的理解来说明一下碎碎念:只是个人的理解,当然不能保证是完全正确的啦!至少现阶段我认为这样的理解虽然是繁杂而且是没必要的,但还是值得啰嗦一下的 :\quad 就最简单地来说,一个二体算符G ^ ( q 1 , q 2 ) \hat{G}(q_1,q_2) G ^ ( q 1 , q 2 ) 应该是属于H 1 ⊗ H 2 H_1 \otimes H_2 H 1 ⊗ H 2 希尔伯特直积空间里面的一个算符,因此它作用的也应该是H 1 ⊗ H 2 H_1 \otimes H_2 H 1 ⊗ H 2 空间里面的波函数。如果有一个φ k ( q 1 ) ∈ H 1 \varphi_k(q_1) \in H_1 φ k ( q 1 ) ∈ H 1 空间,一个φ k ′ ( q 2 ) ∈ H 2 \varphi_{k'}(q_2) \in H_2 φ k ′ ( q 2 ) ∈ H 2 空间,那么这两个属于不同空间的单粒子态波函数可以张成一个H 1 ⊗ H 2 H_1 \otimes H_2 H 1 ⊗ H 2 空间里的波函数∣ φ k ( q 1 ) ⟩ ⊗ ∣ φ k ′ ( q 2 ) ⟩ \ket{\varphi_k(q_1)} \otimes \ket{\varphi_{k'}(q_2)} ∣ φ k ( q 1 ) ⟩ ⊗ ∣ φ k ′ ( q 2 ) ⟩ 。因此这个二体算符作用上去可以写成:
G ^ ( q 1 , q 2 ) ( ∣ φ k ( q 1 ) ⟩ ⊗ ∣ φ k ′ ( q 2 ) ⟩ ) 或者简写成: G ^ ∣ k k ′ ⟩ (1.8.13) \hat{G}(q_1,q_2) \left(\ket{\varphi_k(q_1)} \otimes \ket{\varphi_{k'}(q_2)}\right) \\ \text{或者简写成:} \hat{G} \ket{k \ k'} \tag{1.8.13} G ^ ( q 1 , q 2 ) ( ∣ φ k ( q 1 ) ⟩ ⊗ ∣ φ k ′ ( q 2 ) ⟩ ) 或者简写成: G ^ ∣ k k ′ ⟩ ( 1 . 8 . 1 3 )
因此,我们不难理解,如果想要将 (1.8.11) 式写成完整的形式,应该可以写成如下的形式:
G ^ = ∑ i < j I ^ ( q 1 ) ⊗ ⋯ ⊗ g ^ ( q i , q j ) ⊗ ⋯ ⊗ I ^ ( q N ) ⏟ N-1个直积项 (1.8.14) \hat{G} = \sum_{i<j} \underbrace{\hat{I}(q_1) \otimes \cdots \otimes \hat{g}(q_i,q_j) \otimes \cdots \otimes \hat{I}(q_N)}_\text{N-1个直积项} \tag{1.8.14} G ^ = i < j ∑ N-1 个直积项 I ^ ( q 1 ) ⊗ ⋯ ⊗ g ^ ( q i , q j ) ⊗ ⋯ ⊗ I ^ ( q N ) ( 1 . 8 . 1 4 )
\quad 对于这类二体算符,与 (1.8.3) 类似,它也满足如下的等式:
⟨ ψ n k 1 , ⋯ , n k N ∣ G ^ ∣ ψ n k 1 ′ , ⋯ , n k N ′ ⟩ = C N 2 ⟨ ψ n k 1 , ⋯ , n k N ∣ g ^ ( q 1 , q 2 ) ∣ ψ n k 1 ′ , ⋯ , n k N ′ ⟩ = N ( N − 1 ) 2 ⟨ ψ n k 1 , ⋯ , n k N ∣ g ^ ( q 1 , q 2 ) ∣ ψ n k 1 ′ , ⋯ , n k N ′ ⟩ 或者写完整一点 = N ( N − 1 ) 2 ⟨ ψ n k 1 , ⋯ , n k N ∣ g ^ ( q 1 , q 2 ) ⊗ I ^ ( q 3 ) ⊗ ⋯ ⊗ I ^ ( q N ) ∣ ψ n k 1 ′ , ⋯ , n k N ′ ⟩ (1.8.15) \begin{aligned} \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{G}|\psi_{n'_{k_1},\cdots,n'_{k_N}}} &= C_N^2 \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{g}(q_1,q_2)|\psi_{n'_{k_1},\cdots,n'_{k_N}}} \\&= \frac{N(N-1)}{2} \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{g}(q_1,q_2)|\psi_{n'_{k_1},\cdots,n'_{k_N}}} \\ \text{或者写完整一点} &= \frac{N(N-1)}{2} \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{g}(q_1,q_2) \otimes \hat{I}(q_3) \otimes \cdots \otimes \hat{I}(q_N)|\psi_{n'_{k_1},\cdots,n'_{k_N}}} \end{aligned} \tag{1.8.15} ⟨ ψ n k 1 , ⋯ , n k N ∣ G ^ ∣ ψ n k 1 ′ , ⋯ , n k N ′ ⟩ 或者写完整一点 = C N 2 ⟨ ψ n k 1 , ⋯ , n k N ∣ g ^ ( q 1 , q 2 ) ∣ ψ n k 1 ′ , ⋯ , n k N ′ ⟩ = 2 N ( N − 1 ) ⟨ ψ n k 1 , ⋯ , n k N ∣ g ^ ( q 1 , q 2 ) ∣ ψ n k 1 ′ , ⋯ , n k N ′ ⟩ = 2 N ( N − 1 ) ⟨ ψ n k 1 , ⋯ , n k N ∣ g ^ ( q 1 , q 2 ) ⊗ I ^ ( q 3 ) ⊗ ⋯ ⊗ I ^ ( q N ) ∣ ψ n k 1 ′ , ⋯ , n k N ′ ⟩ ( 1 . 8 . 1 5 )
证明就不写啦!但这式子下面要用到。注意,这一式子对于费米子同样成立。
\quad OK! 回到正题,我们现在要做的是证明在粒子数表象下,两体算符总可以写成如下形式:
G ^ = 1 2 ∑ α ′ , β ′ ∑ α , β g α ′ β ′ , α β a ^ α ′ † a ^ β ′ † a ^ β a ^ α (1.8.16) \begin{aligned} \hat{G} = \frac{1}{2} \sum_{\alpha',\beta'} \sum_{\alpha,\beta} g_{\alpha'\beta',\alpha\beta} \hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'} \hat{a}_{\beta} \hat{a}_{\alpha} \end{aligned} \tag{1.8.16} G ^ = 2 1 α ′ , β ′ ∑ α , β ∑ g α ′ β ′ , α β a ^ α ′ † a ^ β ′ † a ^ β a ^ α ( 1 . 8 . 1 6 )
其中:
g α ′ β ′ , α β = ⟨ φ α ′ ( q 1 ) φ β ′ ( q 2 ) ∣ g ^ ( q 1 , q 2 ) ∣ φ α ( q 1 ) φ β ( q 2 ) ⟩ = ∫ d q 1 d q 2 φ α ′ ( q 1 ) φ β ′ ( q 2 ) g ^ ( q 1 , q 2 ) φ α ( q 1 ) φ β ( q 2 ) (1.8.17) \begin{aligned} g_{\alpha'\beta',\alpha\beta} & = \braket{\varphi_{\alpha'}(q_1) \varphi_{\beta'}(q_2) |\hat{g}(q_1,q_2)| \varphi_{\alpha}(q_1) \varphi_{\beta}(q_2)} \\ &= \int dq_1 dq_2 \ \varphi_{\alpha'}(q_1) \varphi_{\beta'}(q_2) \hat{g}(q_1,q_2) \varphi_{\alpha}(q_1) \varphi_{\beta}(q_2) \end{aligned} \tag{1.8.17} g α ′ β ′ , α β = ⟨ φ α ′ ( q 1 ) φ β ′ ( q 2 ) ∣ g ^ ( q 1 , q 2 ) ∣ φ α ( q 1 ) φ β ( q 2 ) ⟩ = ∫ d q 1 d q 2 φ α ′ ( q 1 ) φ β ′ ( q 2 ) g ^ ( q 1 , q 2 ) φ α ( q 1 ) φ β ( q 2 ) ( 1 . 8 . 1 7 )
由于一般的二体算符会有g ^ ( q 1 , q 2 ) = g ^ ( q 2 , q 1 ) \hat{g}(q_1,q_2)=\hat{g}(q_2,q_1) g ^ ( q 1 , q 2 ) = g ^ ( q 2 , q 1 ) ,因此有如下的等式:
⟨ φ α ′ ( q 1 ) φ β ′ ( q 2 ) ∣ g ^ ( q 1 , q 2 ) ∣ φ α ( q 1 ) φ β ( q 2 ) ⟩ = ⟨ φ β ′ ( q 1 ) φ α ′ ( q 2 ) ∣ g ^ ( q 1 , q 2 ) ∣ φ β ( q 1 ) φ α ( q 2 ) ⟩ ⟹ ⟨ α ′ β ′ ∣ g ^ ∣ α β ⟩ = ⟨ β ′ α ′ ∣ g ^ ∣ β α ⟩ ⟹ g α ′ β ′ , α β = g β ′ α ′ , β α (1.8.18) \begin{aligned} \braket{\varphi_{\alpha'}(q_1) \varphi_{\beta'}(q_2) |\hat{g}(q_1,q_2)| \varphi_{\alpha}(q_1) \varphi_{\beta}(q_2)} &= \braket{\varphi_{\beta'}(q_1) \varphi_{\alpha'}(q_2) |\hat{g}(q_1,q_2)| \varphi_{\beta}(q_1) \varphi_{\alpha}(q_2)} \\ \Longrightarrow \braket{\alpha'\beta'|\hat{g}|\alpha\beta} &= \braket{\beta'\alpha'|\hat{g}|\beta\alpha} \\ \Longrightarrow g_{\alpha'\beta',\alpha\beta} &= g_{\beta'\alpha',\beta\alpha} \end{aligned} \tag{1.8.18} ⟨ φ α ′ ( q 1 ) φ β ′ ( q 2 ) ∣ g ^ ( q 1 , q 2 ) ∣ φ α ( q 1 ) φ β ( q 2 ) ⟩ ⟹ ⟨ α ′ β ′ ∣ g ^ ∣ α β ⟩ ⟹ g α ′ β ′ , α β = ⟨ φ β ′ ( q 1 ) φ α ′ ( q 2 ) ∣ g ^ ( q 1 , q 2 ) ∣ φ β ( q 1 ) φ α ( q 2 ) ⟩ = ⟨ β ′ α ′ ∣ g ^ ∣ β α ⟩ = g β ′ α ′ , β α ( 1 . 8 . 1 8 )
这一等式在下面的推导中我们会用到。
\quad 为了验证,我们同样先用坐标表象来计算二体算符的各个矩阵元,然后用粒子数表象来计算,看看两者是否相等。我们同样分别考虑非零对角矩阵元与非对角矩阵元。
对于对角矩阵元⟨ ψ n k 1 , ⋯ , n k N ∣ G ^ ∣ ψ n k 1 , ⋯ , n k N ⟩ = N ( N − 1 ) 2 ⟨ ψ n k 1 , ⋯ , n k N ∣ g ^ ( q 1 , q 2 ) ∣ ψ n k 1 , ⋯ , n k N ⟩ \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{G}|\psi_{n_{k_1},\cdots,n_{k_N}}} = \frac{N(N-1)}{2} \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{g}(q_1,q_2)|\psi_{n_{k_1},\cdots,n_{k_N}}} ⟨ ψ n k 1 , ⋯ , n k N ∣ G ^ ∣ ψ n k 1 , ⋯ , n k N ⟩ = 2 N ( N − 1 ) ⟨ ψ n k 1 , ⋯ , n k N ∣ g ^ ( q 1 , q 2 ) ∣ ψ n k 1 , ⋯ , n k N ⟩ ,它是非零的。如果用坐标表象的推导方法,如下: ⟨ ψ n k 1 , ⋯ , n k N ∣ G ^ ∣ ψ n k 1 , ⋯ , n k N ⟩ = N ( N − 1 ) 2 ⟨ ψ n k 1 , ⋯ , n k N ∣ g ^ ( q 1 , q 2 ) ∣ ψ n k 1 , ⋯ , n k N ⟩ = N ( N − 1 ) 2 ⟨ n k 1 ! ⋯ n k N ! N ! ∑ { P ^ } φ k 1 ( q p ( 1 ) ) ⊗ ⋯ ⏟ n k 1 ⊗ ⋯ ⊗ φ k N ( q p ( N ) ) ⊗ ⋯ ⏟ n k N ∣ g ^ ( q 1 , q 2 ) ∣ n k 1 ! ⋯ n k N ! N ! ∑ { P ^ } φ k 1 ( q p ( 1 ) ) ⊗ ⋯ ⏟ n k 1 ⊗ ⋯ ⊗ φ k N ( q p ( N ) ) ⊗ ⋯ ⏟ n k N ⟩ = N ( N − 1 ) 2 ( n k 1 ! ⋯ n k N ! N ! ) ∑ i < j [ ⟨ φ k i φ k j ∣ g ^ ∣ φ k i φ k j ⟩ + ⟨ φ k i φ k j ∣ g ^ ∣ φ k j φ k i ⟩ + ⟨ φ k j φ k i ∣ g ^ ∣ φ k i φ k j ⟩ + ⟨ φ k j φ k i ∣ g ^ ∣ φ k j φ k i ⟩ ] ∑ { P ^ } ⋯ ⊗ ⟨ φ k i ( q p i ) ∣ φ k i ( q p i ) ⟩ ⊗ ⋯ ⏟ n k i − 1 ⊗ ⋯ ⊗ ⟨ φ k j ( q p j ) ∣ φ k j ( q p j ) ⟩ ⊗ ⋯ ⏟ n k j − 1 ⊗ ⋯ + N ( N − 1 ) 2 ( n k 1 ! ⋯ n k N ! N ! ) ∑ i ⟨ φ k i φ k i ∣ g ^ ∣ φ k i φ k i ⟩ ∑ { P ^ } ⋯ ⊗ ⟨ φ k i ( q p i ) ∣ φ k i ( q p i ) ⟩ ⊗ ⋯ ⏟ n k i − 2 ⊗ ⋯ = N ( N − 1 ) ( n k 1 ! ⋯ n k N ! N ! ) ∑ i < j [ ⟨ φ k i φ k j ∣ g ^ ∣ φ k i φ k j ⟩ + ⟨ φ k i φ k j ∣ g ^ ∣ φ k j φ k i ⟩ ] ( N − 2 ) ! ⋯ ( n k i − 1 ) ! ⋯ ( n k j − 1 ) ! + N ( N − 1 ) 2 ( n k 1 ! ⋯ n k N ! N ! ) ∑ i ⟨ φ k i φ k i ∣ g ^ ∣ φ k i φ k i ⟩ ( N − 2 ) ! n k 1 ! ⋯ ( n k i − 2 ) ! ⋯ n k N ! = ∑ i < j n k i n k j [ ⟨ φ k i φ k j ∣ g ^ ∣ φ k i φ k j ⟩ + ⟨ φ k i φ k j ∣ g ^ ∣ φ k j φ k i ⟩ ] + 1 2 ∑ i n k i ( n k i − 1 ) ⟨ φ k i φ k i ∣ g ^ ∣ φ k i φ k i ⟩ = ∑ i < j n k i n k j ( g i j , i j + g i j , j i ) + 1 2 ∑ i n k i ( n k i − 1 ) g i i , i i (1.8.19) \begin{aligned} & \quad \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{G}|\psi_{n_{k_1},\cdots,n_{k_N}}} \\&= \frac{N(N-1)}{2} \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{g}(q_1,q_2)|\psi_{n_{k_1},\cdots,n_{k_N}}} \\&= \frac{N(N-1)}{2} \bra{\sqrt{\frac{n_{k_1}! \cdots n_{k_N}!}{N!}} \sum_{\{\hat{P}\}} \underbrace{\varphi_{k_1}(q_{p_{(1)}})\otimes\cdots}_{n_{k_1}} \otimes \cdots \otimes\underbrace{\varphi_{k_N}(q_{p_{(N)}})\otimes\cdots}_{n_{k_N}}} \hat{g}(q_1,q_2) \\& \qquad \ket{\sqrt{\frac{n_{k_1}! \cdots n_{k_N}!}{N!}} \sum_{\{\hat{P}\}} \underbrace{\varphi_{k_1}(q_{p_{(1)}})\otimes\cdots}_{n_{k_1}} \otimes \cdots \otimes\underbrace{\varphi_{k_N}(q_{p_{(N)}})\otimes\cdots}_{n_{k_N}}} \\&= \frac{N(N-1)}{2} (\frac{n_{k_1}! \cdots n_{k_N}!}{N!})\sum_{i<j} [\braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_i}\varphi_{k_j}} + \braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_j}\varphi_{k_i}} + \braket{\varphi_{k_j}\varphi_{k_i}|\hat{g}|\varphi_{k_i}\varphi_{k_j}} \\& \qquad + \braket{\varphi_{k_j}\varphi_{k_i}|\hat{g}|\varphi_{k_j}\varphi_{k_i}}] \sum_{\{\hat{P}\}}\cdots \otimes\underbrace{\braket{\varphi_{k_i}(q_{p_i})|\varphi_{k_i}(q_{p_i})} \otimes \cdots}_{n_{k_i}-1} \otimes\cdots \otimes\underbrace{\braket{\varphi_{k_j}(q_{p_j})|\varphi_{k_j}(q_{p_j})} \otimes \cdots}_{n_{k_j}-1} \otimes \cdots \\& \quad + \frac{N(N-1)}{2} (\frac{n_{k_1}! \cdots n_{k_N}!}{N!})\sum_i\braket{\varphi_{k_i}\varphi_{k_i}|\hat{g}|\varphi_{k_i}\varphi_{k_i}}\sum_{\{\hat{P}\}}\cdots \otimes \underbrace{\braket{\varphi_{k_i}(q_{p_i})|\varphi_{k_i}(q_{p_i})} \otimes \cdots}_{n_{k_i}-2} \otimes \cdots \\&= N(N-1) (\frac{n_{k_1}! \cdots n_{k_N}!}{N!})\sum_{i<j} \left[ \braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_i}\varphi_{k_j}} + \braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_j}\varphi_{k_i}} \right] \frac{(N-2)!}{\cdots (n_{k_i}-1)! \cdots (n_{k_j}-1)!} \\& \quad + \frac{N(N-1)}{2} (\frac{n_{k_1}! \cdots n_{k_N}!}{N!})\sum_i\braket{\varphi_{k_i}\varphi_{k_i}|\hat{g}|\varphi_{k_i}\varphi_{k_i}} \frac{(N-2)!}{n_{k_1}! \cdots (n_{k_i}-2)! \cdots n_{k_N}!} \\&= \sum_{i<j} n_{k_i} n_{k_j} \left[ \braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_i}\varphi_{k_j}} + \braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_j}\varphi_{k_i}} \right] + \frac{1}{2} \sum_i n_{k_i} (n_{k_i}-1) \braket{\varphi_{k_i}\varphi_{k_i}|\hat{g}|\varphi_{k_i}\varphi_{k_i}} \\&= \sum_{i<j} n_{k_i} n_{k_j} (g_{ij,ij}+g_{ij,ji}) + \frac{1}{2} \sum_i n_{k_i} (n_{k_i}-1) g_{ii,ii} \end{aligned} \tag{1.8.19} ⟨ ψ n k 1 , ⋯ , n k N ∣ G ^ ∣ ψ n k 1 , ⋯ , n k N ⟩ = 2 N ( N − 1 ) ⟨ ψ n k 1 , ⋯ , n k N ∣ g ^ ( q 1 , q 2 ) ∣ ψ n k 1 , ⋯ , n k N ⟩ = 2 N ( N − 1 ) ⟨ N ! n k 1 ! ⋯ n k N ! { P ^ } ∑ n k 1 φ k 1 ( q p ( 1 ) ) ⊗ ⋯ ⊗ ⋯ ⊗ n k N φ k N ( q p ( N ) ) ⊗ ⋯ ∣ g ^ ( q 1 , q 2 ) ∣ N ! n k 1 ! ⋯ n k N ! { P ^ } ∑ n k 1 φ k 1 ( q p ( 1 ) ) ⊗ ⋯ ⊗ ⋯ ⊗ n k N φ k N ( q p ( N ) ) ⊗ ⋯ ⟩ = 2 N ( N − 1 ) ( N ! n k 1 ! ⋯ n k N ! ) i < j ∑ [ ⟨ φ k i φ k j ∣ g ^ ∣ φ k i φ k j ⟩ + ⟨ φ k i φ k j ∣ g ^ ∣ φ k j φ k i ⟩ + ⟨ φ k j φ k i ∣ g ^ ∣ φ k i φ k j ⟩ + ⟨ φ k j φ k i ∣ g ^ ∣ φ k j φ k i ⟩ ] { P ^ } ∑ ⋯ ⊗ n k i − 1 ⟨ φ k i ( q p i ) ∣ φ k i ( q p i ) ⟩ ⊗ ⋯ ⊗ ⋯ ⊗ n k j − 1 ⟨ φ k j ( q p j ) ∣ φ k j ( q p j ) ⟩ ⊗ ⋯ ⊗ ⋯ + 2 N ( N − 1 ) ( N ! n k 1 ! ⋯ n k N ! ) i ∑ ⟨ φ k i φ k i ∣ g ^ ∣ φ k i φ k i ⟩ { P ^ } ∑ ⋯ ⊗ n k i − 2 ⟨ φ k i ( q p i ) ∣ φ k i ( q p i ) ⟩ ⊗ ⋯ ⊗ ⋯ = N ( N − 1 ) ( N ! n k 1 ! ⋯ n k N ! ) i < j ∑ [ ⟨ φ k i φ k j ∣ g ^ ∣ φ k i φ k j ⟩ + ⟨ φ k i φ k j ∣ g ^ ∣ φ k j φ k i ⟩ ] ⋯ ( n k i − 1 ) ! ⋯ ( n k j − 1 ) ! ( N − 2 ) ! + 2 N ( N − 1 ) ( N ! n k 1 ! ⋯ n k N ! ) i ∑ ⟨ φ k i φ k i ∣ g ^ ∣ φ k i φ k i ⟩ n k 1 ! ⋯ ( n k i − 2 ) ! ⋯ n k N ! ( N − 2 ) ! = i < j ∑ n k i n k j [ ⟨ φ k i φ k j ∣ g ^ ∣ φ k i φ k j ⟩ + ⟨ φ k i φ k j ∣ g ^ ∣ φ k j φ k i ⟩ ] + 2 1 i ∑ n k i ( n k i − 1 ) ⟨ φ k i φ k i ∣ g ^ ∣ φ k i φ k i ⟩ = i < j ∑ n k i n k j ( g i j , i j + g i j , j i ) + 2 1 i ∑ n k i ( n k i − 1 ) g i i , i i ( 1 . 8 . 1 9 )
如果用粒子数表象,我们运用到 (1.8.16) 式,如下:
⟨ ψ n k 1 , ⋯ , n k N ∣ G ^ ∣ ψ n k 1 , ⋯ , n k N ⟩ = ⟨ n k N , ⋯ , n k 1 ∣ G ^ ∣ n k 1 , ⋯ , n k N ⟩ = 1 2 ∑ α ′ β ′ ∑ α β g α ′ β ′ , α β ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † a ^ β a ^ α ∣ n k 1 , ⋯ , n k N ⟩ = 1 2 ∑ α ′ β ′ ∑ α β α ≠ β g α ′ β ′ , α β ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 1 , ⋯ , n β − 1 , ⋯ ⟩ n α n β + 1 2 ∑ α ′ β ′ ∑ α β α = β g α ′ β ′ , α β ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 2 , ⋯ ⟩ n α ( n α − 1 ) = 1 2 ∑ α ′ β ′ ∑ α < β g α ′ β ′ , α β ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 1 , ⋯ , n β − 1 , ⋯ ⟩ n α n β + 1 2 ∑ α ′ β ′ ∑ α < β g α ′ β ′ , β α ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 1 , ⋯ , n β − 1 , ⋯ ⟩ n α n β + 1 2 ∑ α ′ β ′ ∑ α g α ′ β ′ , α α ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 2 , ⋯ ⟩ n α ( n α − 1 ) = 1 2 ∑ α ′ β ′ ∑ α < β g α ′ β ′ , α β ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 1 , ⋯ , n β − 1 , ⋯ ⟩ n α n β δ α ′ α δ β ′ β + 1 2 ∑ α ′ β ′ ∑ α < β g α ′ β ′ , α β ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 1 , ⋯ , n β − 1 , ⋯ ⟩ n α n β δ α ′ β δ β ′ α + 1 2 ∑ α ′ β ′ ∑ α < β g α ′ β ′ , β α ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 1 , ⋯ , n β − 1 , ⋯ ⟩ n α n β δ α ′ α δ β ′ β + 1 2 ∑ α ′ β ′ ∑ α < β g α ′ β ′ , β α ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 1 , ⋯ , n β − 1 , ⋯ ⟩ n α n β δ α ′ β δ β ′ α + 1 2 ∑ α ′ β ′ ∑ α g α ′ β ′ , α α ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 2 , ⋯ ⟩ n α ( n α − 1 ) δ α ′ α δ β ′ α = 1 2 ∑ α < β n α n β g α β , α β + 1 2 ∑ α < β n α n β g β α , α β + 1 2 ∑ α < β n α n β g α β , β α + 1 2 ∑ α < β n α n β g β α , β α + 1 2 ∑ α < β n α ( n α − 1 ) g α α , α α = ∑ i < j n k i n k j ( g i j , i j + g i j , j i ) + 1 2 ∑ i n k i ( n k i − 1 ) g i i , i i (1.8.20) \begin{aligned} & \braket{\psi_{n_{k_1},\cdots,n_{k_N}}|\hat{G}|\psi_{n_{k_1},\cdots,n_{k_N}}} \\=& \braket{n_{k_N},\cdots,n_{k_1}|\hat{G}|n_{k_1},\cdots,n_{k_N}} \\=& \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'} \hat{a}_{\beta} \hat{a}_{\alpha}|n_{k_1},\cdots,n_{k_N}} \\=& \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\substack{\alpha\beta \\ \alpha\ne\beta}} g_{\alpha'\beta',\alpha\beta} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{\alpha}-1,\cdots,n_{\beta}-1,\cdots} \sqrt{n_\alpha n_\beta} \\ & \quad +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\substack{\alpha\beta \\ \alpha=\beta}} g_{\alpha'\beta',\alpha\beta} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_\alpha-2,\cdots} \sqrt{n_\alpha(n_\alpha-1)} \\=& \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha<\beta} g_{\alpha'\beta',\alpha\beta} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{\alpha}-1,\cdots,n_{\beta}-1,\cdots} \sqrt{n_\alpha n_\beta} \\ & \quad +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha<\beta} g_{\alpha'\beta',\beta\alpha} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{\alpha}-1,\cdots,n_{\beta}-1,\cdots} \sqrt{n_\alpha n_\beta} \\ & \quad +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha} g_{\alpha'\beta',\alpha\alpha} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_\alpha-2,\cdots} \sqrt{n_\alpha(n_\alpha-1)} \\=& \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha<\beta} g_{\alpha'\beta',\alpha\beta} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{\alpha}-1,\cdots,n_{\beta}-1,\cdots} \sqrt{n_\alpha n_\beta} \ \delta_{\alpha'\alpha} \delta_{\beta'\beta} \\ & \quad +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha<\beta} g_{\alpha'\beta',\alpha\beta} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{\alpha}-1,\cdots,n_{\beta}-1,\cdots} \sqrt{n_\alpha n_\beta} \ \delta_{\alpha'\beta} \delta_{\beta'\alpha} \\ & \quad +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha<\beta} g_{\alpha'\beta',\beta\alpha} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{\alpha}-1,\cdots,n_{\beta}-1,\cdots} \sqrt{n_\alpha n_\beta} \ \delta_{\alpha'\alpha} \delta_{\beta'\beta} \\ & \quad +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha<\beta} g_{\alpha'\beta',\beta\alpha} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{\alpha}-1,\cdots,n_{\beta}-1,\cdots} \sqrt{n_\alpha n_\beta} \ \delta_{\alpha'\beta} \delta_{\beta'\alpha} \\ & \quad + \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha} g_{\alpha'\beta',\alpha\alpha} \braket{n_{k_N},\cdots,n_{k_1}|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_\alpha-2,\cdots} \sqrt{n_\alpha(n_\alpha-1)} \delta_{\alpha'\alpha} \delta_{\beta'\alpha} \\=& \frac{1}{2} \sum_{\alpha<\beta} n_\alpha n_\beta g_{\alpha\beta,\alpha\beta} + \frac{1}{2} \sum_{\alpha<\beta} n_\alpha n_\beta g_{\beta\alpha,\alpha\beta} + \frac{1}{2} \sum_{\alpha<\beta} n_\alpha n_\beta g_{\alpha\beta,\beta\alpha} + \frac{1}{2} \sum_{\alpha<\beta} n_\alpha n_\beta g_{\beta\alpha,\beta\alpha} + \frac{1}{2} \sum_{\alpha<\beta} n_\alpha(n_\alpha-1) g_{\alpha\alpha,\alpha\alpha} \\=& \sum_{i<j} n_{k_i} n_{k_j} (g_{ij,ij}+g_{ij,ji}) + \frac{1}{2} \sum_i n_{k_i} (n_{k_i}-1) g_{ii,ii} \end{aligned} \tag{1.8.20} = = = = = = = ⟨ ψ n k 1 , ⋯ , n k N ∣ G ^ ∣ ψ n k 1 , ⋯ , n k N ⟩ ⟨ n k N , ⋯ , n k 1 ∣ G ^ ∣ n k 1 , ⋯ , n k N ⟩ 2 1 α ′ β ′ ∑ α β ∑ g α ′ β ′ , α β ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † a ^ β a ^ α ∣ n k 1 , ⋯ , n k N ⟩ 2 1 α ′ β ′ ∑ α β α = β ∑ g α ′ β ′ , α β ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 1 , ⋯ , n β − 1 , ⋯ ⟩ n α n β + 2 1 α ′ β ′ ∑ α β α = β ∑ g α ′ β ′ , α β ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 2 , ⋯ ⟩ n α ( n α − 1 ) 2 1 α ′ β ′ ∑ α < β ∑ g α ′ β ′ , α β ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 1 , ⋯ , n β − 1 , ⋯ ⟩ n α n β + 2 1 α ′ β ′ ∑ α < β ∑ g α ′ β ′ , β α ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 1 , ⋯ , n β − 1 , ⋯ ⟩ n α n β + 2 1 α ′ β ′ ∑ α ∑ g α ′ β ′ , α α ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 2 , ⋯ ⟩ n α ( n α − 1 ) 2 1 α ′ β ′ ∑ α < β ∑ g α ′ β ′ , α β ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 1 , ⋯ , n β − 1 , ⋯ ⟩ n α n β δ α ′ α δ β ′ β + 2 1 α ′ β ′ ∑ α < β ∑ g α ′ β ′ , α β ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 1 , ⋯ , n β − 1 , ⋯ ⟩ n α n β δ α ′ β δ β ′ α + 2 1 α ′ β ′ ∑ α < β ∑ g α ′ β ′ , β α ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 1 , ⋯ , n β − 1 , ⋯ ⟩ n α n β δ α ′ α δ β ′ β + 2 1 α ′ β ′ ∑ α < β ∑ g α ′ β ′ , β α ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 1 , ⋯ , n β − 1 , ⋯ ⟩ n α n β δ α ′ β δ β ′ α + 2 1 α ′ β ′ ∑ α ∑ g α ′ β ′ , α α ⟨ n k N , ⋯ , n k 1 ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n α − 2 , ⋯ ⟩ n α ( n α − 1 ) δ α ′ α δ β ′ α 2 1 α < β ∑ n α n β g α β , α β + 2 1 α < β ∑ n α n β g β α , α β + 2 1 α < β ∑ n α n β g α β , β α + 2 1 α < β ∑ n α n β g β α , β α + 2 1 α < β ∑ n α ( n α − 1 ) g α α , α α i < j ∑ n k i n k j ( g i j , i j + g i j , j i ) + 2 1 i ∑ n k i ( n k i − 1 ) g i i , i i ( 1 . 8 . 2 0 )
因此,在两种表象中给出的G ^ \hat{G} G ^ 的对角矩阵元是完全一样的。
下面,我们再来考察一下G ^ \hat{G} G ^ 的非对角矩阵元。一般来说,只有下面几种非零的矩阵元: ( n k i , n k j , n k k , n k l ) ⟶ ( n k i − 1 , n k j − 1 , n k k + 1 , n k l + 1 ) ( n k i , n k j , n k k , n k l ) ⟶ ( n k i − 1 , n k j − 1 , n k k + 2 , n k l ) ( n k i , n k j , n k k , n k l ) ⟶ ( n k i − 2 , n k j , n k k + 2 , n k l ) ( n k i , n k j , n k k , n k l ) ⟶ ( n k i , n k j − 1 , n k k + 1 , n k l ) (1.8.21) \begin{aligned} (n_{k_i},n_{k_j},n_{k_k},n_{k_l}) &\longrightarrow (n_{k_i}-1,n_{k_j}-1,n_{k_k}+1,n_{k_l}+1) \\(n_{k_i},n_{k_j},n_{k_k},n_{k_l}) &\longrightarrow (n_{k_i}-1,n_{k_j}-1,n_{k_k}+2,n_{k_l}) \\(n_{k_i},n_{k_j},n_{k_k},n_{k_l}) &\longrightarrow (n_{k_i}-2,n_{k_j},n_{k_k}+2,n_{k_l}) \\(n_{k_i},n_{k_j},n_{k_k},n_{k_l}) &\longrightarrow (n_{k_i},n_{k_j}-1,n_{k_k}+1,n_{k_l}) \end{aligned} \tag{1.8.21} ( n k i , n k j , n k k , n k l ) ( n k i , n k j , n k k , n k l ) ( n k i , n k j , n k k , n k l ) ( n k i , n k j , n k k , n k l ) ⟶ ( n k i − 1 , n k j − 1 , n k k + 1 , n k l + 1 ) ⟶ ( n k i − 1 , n k j − 1 , n k k + 2 , n k l ) ⟶ ( n k i − 2 , n k j , n k k + 2 , n k l ) ⟶ ( n k i , n k j − 1 , n k k + 1 , n k l ) ( 1 . 8 . 2 1 )
这里,我们就不一一讨论了,就以( n k i , n k j , n k k , n k l ) ⟶ ( n k i − 1 , n k j − 1 , n k k + 1 , n k l + 1 ) (n_{k_i},n_{k_j},n_{k_k},n_{k_l}) \longrightarrow (n_{k_i}-1,n_{k_j}-1,n_{k_k}+1,n_{k_l}+1) ( n k i , n k j , n k k , n k l ) ⟶ ( n k i − 1 , n k j − 1 , n k k + 1 , n k l + 1 ) 为例做讨论。它在坐标波函数表象中,矩阵元如下:
⟨ ψ ⋯ , n k i , n k j , n k k , n k l , ⋯ ∣ G ^ ∣ ψ ⋯ , n k i − 1 , n k j − 1 , n k k + 1 , n k l + 1 , ⋯ ⟩ = N ( N − 1 ) 2 ⟨ ψ ⋯ , n k i , n k j , n k k , n k l , ⋯ ∣ g ^ ( q 1 , q 2 ) ∣ ψ ⋯ , n k i − 1 , n k j − 1 , n k k + 1 , n k l + 1 , ⋯ ⟩ = N ( N − 1 ) 2 ⋯ n k i ! n k j ! n k k ! n k l ! ⋯ N ! ⋯ ( n k i − 1 ) ! ( n k j − 1 ) ! ( n k k + 1 ) ! ( n k l + 1 ) ! ⋯ N ! [ ⟨ φ k i φ k j ∣ g ^ ∣ φ k k φ k l ⟩ + ⟨ φ k i φ k j ∣ g ^ ∣ φ k l φ k k ⟩ + ⟨ φ k j φ k i ∣ g ^ ∣ φ k k φ k l ⟩ + ⟨ φ k j φ k i ∣ g ^ ∣ φ k l φ k k ⟩ ] ∑ { P ^ } ⋯ ⊗ ⟨ φ k i ( q p i ) ∣ φ k i ( q p i ) ⟩ ⊗ ⋯ ⏟ n k i − 1 ⊗ ⋯ ⊗ ⟨ φ k j ( q p j ) ∣ φ k j ( q p j ) ⟩ ⊗ ⋯ ⏟ n k j − 1 ⊗ ⋯ ⊗ ⟨ φ k k ( q p k ) ∣ φ k k ( q p k ) ⟩ ⊗ ⋯ ⏟ n k k ⊗ ⋯ ⊗ ⟨ φ k l ( q p l ) ∣ φ k l ( q p l ) ⟩ ⊗ ⋯ ⏟ n k l ⊗ ⋯ = N ( N − 1 ) ( ⋯ ( n k i − 1 ) ! ( n k j − 1 ) ! n k k ! n k l ! ⋯ N ! ) n k i n k j ( n k k + 1 ) ( n k l + 1 ) [ ⟨ φ k i φ k j ∣ g ^ ∣ φ k k φ k l ⟩ + ⟨ φ k i φ k j ∣ g ^ ∣ φ k l φ k k ⟩ ] ( ( N − 2 ) ! ⋯ ( n k i − 1 ) ! ( n k j − 1 ) ! n k k ! n k l ! ⋯ ) = n k i n k j ( n k k + 1 ) ( n k l + 1 ) [ ⟨ φ k i φ k j ∣ g ^ ∣ φ k k φ k l ⟩ + ⟨ φ k i φ k j ∣ g ^ ∣ φ k l φ k k ⟩ ] = n k i n k j ( n k k + 1 ) ( n k l + 1 ) ( g k i k j , k k k l + g k i k j , k l k k ) (1.8.22) \begin{aligned} & \braket{\psi_{\cdots,n_{k_i},n_{k_j},n_{k_k},n_{k_l},\cdots}|\hat{G}|\psi_{\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k}+1,n_{k_l}+1,\cdots}} \\=& \frac{N(N-1)}{2} \braket{\psi_{\cdots,n_{k_i},n_{k_j},n_{k_k},n_{k_l},\cdots}|\hat{g}(q_1,q_2)|\psi_{\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k}+1,n_{k_l}+1,\cdots}} \\=& \frac{N(N-1)}{2} \sqrt{\frac{\cdots n_{k_i}!n_{k_j}!n_{k_k}!n_{k_l}! \cdots}{N!}} \sqrt{\frac{\cdots (n_{k_i}-1)!(n_{k_j}-1)!(n_{k_k}+1)!(n_{k_l}+1)! \cdots}{N!}} \\ & \quad [\braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_k}\varphi_{k_l}} + \braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_l}\varphi_{k_k}} + \braket{\varphi_{k_j}\varphi_{k_i}|\hat{g}|\varphi_{k_k}\varphi_{k_l}} + \braket{\varphi_{k_j}\varphi_{k_i}|\hat{g}|\varphi_{k_l}\varphi_{k_k}}] \\ & \quad \sum_{\{\hat{P}\}} \cdots \otimes \underbrace{\braket{\varphi_{k_i}(q_{p_i})|\varphi_{k_i}(q_{p_i})}\otimes\cdots}_{n_{k_i}-1} \otimes \cdots \otimes \underbrace{\braket{\varphi_{k_j}(q_{p_j})|\varphi_{k_j}(q_{p_j})}\otimes\cdots}_{n_{k_j}-1} \otimes \cdots \otimes \\ & \quad \underbrace{\braket{\varphi_{k_k}(q_{p_k})|\varphi_{k_k}(q_{p_k})}\otimes\cdots}_{n_{k_k}} \otimes \cdots \otimes \underbrace{\braket{\varphi_{k_l}(q_{p_l})|\varphi_{k_l}(q_{p_l})}\otimes\cdots}_{n_{k_l}} \otimes \cdots \\=& N(N-1) (\frac{\cdots (n_{k_i}-1)!(n_{k_j}-1)!n_{k_k}!n_{k_l}! \cdots}{N!}) \sqrt{n_{k_i}n_{k_j}(n_{k_k}+1)(n_{k_l}+1)} \\ & \quad [\braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_k}\varphi_{k_l}} + \braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_l}\varphi_{k_k}}] (\frac{(N-2)!}{\cdots (n_{k_i}-1)!(n_{k_j}-1)!n_{k_k}!n_{k_l}! \cdots}) \\=& \sqrt{n_{k_i}n_{k_j}(n_{k_k}+1)(n_{k_l}+1)} [\braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_k}\varphi_{k_l}} + \braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_l}\varphi_{k_k}}] \\=& \sqrt{n_{k_i}n_{k_j}(n_{k_k}+1)(n_{k_l}+1)} (g_{k_ik_j,k_kk_l}+g_{k_ik_j,k_lk_k}) \end{aligned} \tag{1.8.22} = = = = = ⟨ ψ ⋯ , n k i , n k j , n k k , n k l , ⋯ ∣ G ^ ∣ ψ ⋯ , n k i − 1 , n k j − 1 , n k k + 1 , n k l + 1 , ⋯ ⟩ 2 N ( N − 1 ) ⟨ ψ ⋯ , n k i , n k j , n k k , n k l , ⋯ ∣ g ^ ( q 1 , q 2 ) ∣ ψ ⋯ , n k i − 1 , n k j − 1 , n k k + 1 , n k l + 1 , ⋯ ⟩ 2 N ( N − 1 ) N ! ⋯ n k i ! n k j ! n k k ! n k l ! ⋯ N ! ⋯ ( n k i − 1 ) ! ( n k j − 1 ) ! ( n k k + 1 ) ! ( n k l + 1 ) ! ⋯ [ ⟨ φ k i φ k j ∣ g ^ ∣ φ k k φ k l ⟩ + ⟨ φ k i φ k j ∣ g ^ ∣ φ k l φ k k ⟩ + ⟨ φ k j φ k i ∣ g ^ ∣ φ k k φ k l ⟩ + ⟨ φ k j φ k i ∣ g ^ ∣ φ k l φ k k ⟩ ] { P ^ } ∑ ⋯ ⊗ n k i − 1 ⟨ φ k i ( q p i ) ∣ φ k i ( q p i ) ⟩ ⊗ ⋯ ⊗ ⋯ ⊗ n k j − 1 ⟨ φ k j ( q p j ) ∣ φ k j ( q p j ) ⟩ ⊗ ⋯ ⊗ ⋯ ⊗ n k k ⟨ φ k k ( q p k ) ∣ φ k k ( q p k ) ⟩ ⊗ ⋯ ⊗ ⋯ ⊗ n k l ⟨ φ k l ( q p l ) ∣ φ k l ( q p l ) ⟩ ⊗ ⋯ ⊗ ⋯ N ( N − 1 ) ( N ! ⋯ ( n k i − 1 ) ! ( n k j − 1 ) ! n k k ! n k l ! ⋯ ) n k i n k j ( n k k + 1 ) ( n k l + 1 ) [ ⟨ φ k i φ k j ∣ g ^ ∣ φ k k φ k l ⟩ + ⟨ φ k i φ k j ∣ g ^ ∣ φ k l φ k k ⟩ ] ( ⋯ ( n k i − 1 ) ! ( n k j − 1 ) ! n k k ! n k l ! ⋯ ( N − 2 ) ! ) n k i n k j ( n k k + 1 ) ( n k l + 1 ) [ ⟨ φ k i φ k j ∣ g ^ ∣ φ k k φ k l ⟩ + ⟨ φ k i φ k j ∣ g ^ ∣ φ k l φ k k ⟩ ] n k i n k j ( n k k + 1 ) ( n k l + 1 ) ( g k i k j , k k k l + g k i k j , k l k k ) ( 1 . 8 . 2 2 )
而在粒子数表象中我们有:
⟨ ⋯ , n k l , ⋯ , n k k , ⋯ , n k j , ⋯ , n k i , ⋯ ∣ G ^ ∣ ⋯ , n k i − 1 , ⋯ , n k j − 1 , ⋯ , n k k + 1 , ⋯ , n k l + 1 , ⋯ ⟩ = 1 2 ∑ α ′ β ′ ∑ α β g α ′ β ′ , α β ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † a ^ β a ^ α ∣ ⋯ , n k i − 1 , n k j − 1 , n k k + 1 , n k l + 1 , ⋯ ⟩ = 1 2 ∑ α ′ β ′ ∑ α β g α ′ β ′ , α β ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † a ^ β a ^ α ∣ ⋯ , n k i − 1 , n k j − 1 , n k k + 1 , n k l + 1 , ⋯ ⟩ δ α , k k δ β , k l + 1 2 ∑ α ′ β ′ ∑ α β g α ′ β ′ , α β ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † a ^ β a ^ α ∣ ⋯ , n k i − 1 , n k j − 1 , n k k + 1 , n k l + 1 , ⋯ ⟩ δ α , k l δ β , k k = 1 2 ∑ α ′ β ′ g α ′ β ′ , k k k l ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n k i − 1 , n k j − 1 , n k k , n k l , ⋯ ⟩ ( n k k + 1 ) ( n k l + 1 ) + 1 2 ∑ α ′ β ′ g α ′ β ′ , k l k k ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n k i − 1 , n k j − 1 , n k k , n k l , ⋯ ⟩ ( n k k + 1 ) ( n k l + 1 ) = 1 2 ∑ α ′ β ′ g α ′ β ′ , k k k l ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n k i − 1 , n k j − 1 , n k k , n k l , ⋯ ⟩ ( n k k + 1 ) ( n k l + 1 ) δ α ′ , k i δ β ′ , k j + 1 2 ∑ α ′ β ′ g α ′ β ′ , k k k l ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n k i − 1 , n k j − 1 , n k k , n k l , ⋯ ⟩ ( n k k + 1 ) ( n k l + 1 ) δ α ′ , k j δ β ′ , k i + 1 2 ∑ α ′ β ′ g α ′ β ′ , k l k k ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n k i − 1 , n k j − 1 , n k k , n k l , ⋯ ⟩ ( n k k + 1 ) ( n k l + 1 ) δ α ′ , k i δ β ′ , k j + 1 2 ∑ α ′ β ′ g α ′ β ′ , k l k k ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n k i − 1 , n k j − 1 , n k k , n k l , ⋯ ⟩ ( n k k + 1 ) ( n k l + 1 ) δ α ′ , k j δ β ′ , k i = 1 2 g k i k j , k k k l n k i n k j ( n k k + 1 ) ( n k l + 1 ) + 1 2 g k j k i , k k k l n k i n k j ( n k k + 1 ) ( n k l + 1 ) + 1 2 g k i k j , k l k k n k i n k j ( n k k + 1 ) ( n k l + 1 ) + 1 2 g k j k i , k l k k n k i n k j ( n k k + 1 ) ( n k l + 1 ) = n k i n k j ( n k k + 1 ) ( n k l + 1 ) ( g k i k j , k k k l + g k i k j , k l k k ) (1.8.23) \begin{aligned} & \braket{\cdots,n_{k_l},\cdots,n_{k_k},\cdots,n_{k_j},\cdots,n_{k_i},\cdots|\hat{G}|\cdots,n_{k_i}-1,\cdots,n_{k_j}-1,\cdots,n_{k_k}+1,\cdots,n_{k_l}+1,\cdots} \\=& \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'} \hat{a}_{\beta} \hat{a}_{\alpha}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k}+1,n_{k_l}+1,\cdots} \\=& \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'} \hat{a}_{\beta} \hat{a}_{\alpha}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k}+1,n_{k_l}+1,\cdots} \delta_{\alpha,k_k} \delta_{\beta,k_l} \\ & \ +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'} \hat{a}_{\beta} \hat{a}_{\alpha}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k}+1,n_{k_l}+1,\cdots} \delta_{\alpha,k_l} \delta_{\beta,k_k} \\=& \frac{1}{2} \sum_{\alpha'\beta'} g_{\alpha'\beta',k_k k_l} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k},n_{k_l},\cdots} \sqrt{(n_{k_k}+1)(n_{k_l}+1)} \\ & \ +\frac{1}{2} \sum_{\alpha'\beta'} g_{\alpha'\beta',k_l k_k} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k},n_{k_l},\cdots} \sqrt{(n_{k_k}+1)(n_{k_l}+1)} \\= & \frac{1}{2} \sum_{\alpha'\beta'} g_{\alpha'\beta',k_k k_l} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k},n_{k_l},\cdots} \sqrt{(n_{k_k}+1)(n_{k_l}+1)} \delta_{\alpha',k_i} \delta_{\beta',k_j} \\ & \ +\frac{1}{2} \sum_{\alpha'\beta'} g_{\alpha'\beta',k_k k_l} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k},n_{k_l},\cdots} \sqrt{(n_{k_k}+1)(n_{k_l}+1)} \delta_{\alpha',k_j} \delta_{\beta',k_i} \\ & \ +\frac{1}{2} \sum_{\alpha'\beta'} g_{\alpha'\beta',k_l k_k} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k},n_{k_l},\cdots} \sqrt{(n_{k_k}+1)(n_{k_l}+1)} \delta_{\alpha',k_i} \delta_{\beta',k_j} \\ & \ +\frac{1}{2} \sum_{\alpha'\beta'} g_{\alpha'\beta',k_l k_k} \braket{\cdots,n_{k_l},n_{k_k},n_{k_j},n_{k_i},\cdots|\hat{a}^\dagger_{\alpha'} \hat{a}^\dagger_{\beta'}|\cdots,n_{k_i}-1,n_{k_j}-1,n_{k_k},n_{k_l},\cdots} \sqrt{(n_{k_k}+1)(n_{k_l}+1)} \delta_{\alpha',k_j} \delta_{\beta',k_i} \\=& \frac{1}{2} g_{k_i k_j,k_k k_l} \sqrt{n_{k_i}n_{k_j}(n_{k_k}+1)(n_{k_l}+1)} + \frac{1}{2} g_{k_j k_i,k_k k_l} \sqrt{n_{k_i}n_{k_j}(n_{k_k}+1)(n_{k_l}+1)} \\ & \ +\frac{1}{2} g_{k_i k_j,k_l k_k} \sqrt{n_{k_i}n_{k_j}(n_{k_k}+1)(n_{k_l}+1)} + \frac{1}{2} g_{k_j k_i,k_l k_k} \sqrt{n_{k_i}n_{k_j}(n_{k_k}+1)(n_{k_l}+1)} \\=& \sqrt{n_{k_i}n_{k_j}(n_{k_k}+1)(n_{k_l}+1)} (g_{k_ik_j,k_kk_l}+g_{k_ik_j,k_lk_k}) \end{aligned} \tag{1.8.23} = = = = = = ⟨ ⋯ , n k l , ⋯ , n k k , ⋯ , n k j , ⋯ , n k i , ⋯ ∣ G ^ ∣ ⋯ , n k i − 1 , ⋯ , n k j − 1 , ⋯ , n k k + 1 , ⋯ , n k l + 1 , ⋯ ⟩ 2 1 α ′ β ′ ∑ α β ∑ g α ′ β ′ , α β ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † a ^ β a ^ α ∣ ⋯ , n k i − 1 , n k j − 1 , n k k + 1 , n k l + 1 , ⋯ ⟩ 2 1 α ′ β ′ ∑ α β ∑ g α ′ β ′ , α β ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † a ^ β a ^ α ∣ ⋯ , n k i − 1 , n k j − 1 , n k k + 1 , n k l + 1 , ⋯ ⟩ δ α , k k δ β , k l + 2 1 α ′ β ′ ∑ α β ∑ g α ′ β ′ , α β ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † a ^ β a ^ α ∣ ⋯ , n k i − 1 , n k j − 1 , n k k + 1 , n k l + 1 , ⋯ ⟩ δ α , k l δ β , k k 2 1 α ′ β ′ ∑ g α ′ β ′ , k k k l ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n k i − 1 , n k j − 1 , n k k , n k l , ⋯ ⟩ ( n k k + 1 ) ( n k l + 1 ) + 2 1 α ′ β ′ ∑ g α ′ β ′ , k l k k ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n k i − 1 , n k j − 1 , n k k , n k l , ⋯ ⟩ ( n k k + 1 ) ( n k l + 1 ) 2 1 α ′ β ′ ∑ g α ′ β ′ , k k k l ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n k i − 1 , n k j − 1 , n k k , n k l , ⋯ ⟩ ( n k k + 1 ) ( n k l + 1 ) δ α ′ , k i δ β ′ , k j + 2 1 α ′ β ′ ∑ g α ′ β ′ , k k k l ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n k i − 1 , n k j − 1 , n k k , n k l , ⋯ ⟩ ( n k k + 1 ) ( n k l + 1 ) δ α ′ , k j δ β ′ , k i + 2 1 α ′ β ′ ∑ g α ′ β ′ , k l k k ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n k i − 1 , n k j − 1 , n k k , n k l , ⋯ ⟩ ( n k k + 1 ) ( n k l + 1 ) δ α ′ , k i δ β ′ , k j + 2 1 α ′ β ′ ∑ g α ′ β ′ , k l k k ⟨ ⋯ , n k l , n k k , n k j , n k i , ⋯ ∣ a ^ α ′ † a ^ β ′ † ∣ ⋯ , n k i − 1 , n k j − 1 , n k k , n k l , ⋯ ⟩ ( n k k + 1 ) ( n k l + 1 ) δ α ′ , k j δ β ′ , k i 2 1 g k i k j , k k k l n k i n k j ( n k k + 1 ) ( n k l + 1 ) + 2 1 g k j k i , k k k l n k i n k j ( n k k + 1 ) ( n k l + 1 ) + 2 1 g k i k j , k l k k n k i n k j ( n k k + 1 ) ( n k l + 1 ) + 2 1 g k j k i , k l k k n k i n k j ( n k k + 1 ) ( n k l + 1 ) n k i n k j ( n k k + 1 ) ( n k l + 1 ) ( g k i k j , k k k l + g k i k j , k l k k ) ( 1 . 8 . 2 3 )
现在验证完毕,这两种表象给出的G ^ \hat{G} G ^ 的矩阵元是完全相同的。
# 费米子单体和二体算符的表达式\quad 在讨论完玻色子算符的表示之后,我们下面就不难来研究费米子的算符表示了。
# 单体算符\quad 费米子的单体算符在粒子数表象中,亦可以被写为:
F ^ = ∑ α , β f α β C ^ α † C ^ β f α β = ⟨ φ α ∣ f ^ ∣ φ β ⟩ (1.9.1) \begin{aligned} \hat{F} = \sum_{\alpha,\beta} f_{\alpha\beta} \hat{C}^\dagger_\alpha \hat{C}_\beta \\ f_{\alpha\beta} = \braket{\varphi_\alpha|\hat{f}|\varphi_\beta} \end{aligned} \tag{1.9.1} F ^ = α , β ∑ f α β C ^ α † C ^ β f α β = ⟨ φ α ∣ f ^ ∣ φ β ⟩ ( 1 . 9 . 1 )
验证方法与上面相同,我们计算在两种不同表象下的矩阵元,看看是否相等。
对于对角矩阵元,它在波函数坐标表象下,结果如下: ⟨ ψ α , β , γ , ⋯ ∣ F ^ ∣ ψ α , β , γ , ⋯ ⟩ = N ⟨ 1 N ! ∑ { P ^ } δ ( P ^ ) φ α ( q p ( 1 ) ) ⊗ φ β ( q p ( 2 ) ) ⊗ φ γ ( q p ( 3 ) ) ⊗ ⋯ ∣ f ^ ( q 1 , q 2 ) ∣ 1 N ! ∑ { P ^ } δ ( P ^ ) φ α ( q p ( 1 ) ) ⊗ φ β ( q p ( 2 ) ) ⊗ φ γ ( q p ( 3 ) ) ⊗ ⋯ ⟩ = N 1 N ! ∑ k i ⟨ φ k i ∣ g ^ ∣ φ k i ⟩ ∑ { P ^ } ⟨ φ α ( q p ( 1 ) ) ∣ φ α ( q p ( 1 ) ) ⟩ ⊗ ⟨ φ β ( q p ( 2 ) ) ∣ φ β ( q p ( 2 ) ) ⟩ ⊗ ⟨ φ γ ( q p ( 3 ) ) ∣ φ γ ( q p ( 3 ) ) ⟩ ⊗ ⋯ = N 1 N ! ∑ k i ⟨ φ k i ∣ g ^ ∣ φ k i ⟩ ( N − 1 ) ! = ∑ k i f k i k i (1.9.2) \begin{aligned} & \braket{\psi_{\alpha,\beta,\gamma,\cdots}|\hat{F}|\psi_{\alpha,\beta,\gamma,\cdots}} \\=& N \braket{\frac{1}{\sqrt{N!}} \sum_{\{\hat{P}\}} \delta(\hat{P}) \ \varphi_\alpha(q_{p(1)}) \otimes \varphi_\beta(q_{p(2)}) \otimes \varphi_\gamma(q_{p(3)}) \otimes \cdots|\hat{f}(q_1,q_2)|\frac{1}{\sqrt{N!}} \sum_{\{\hat{P}\}} \delta(\hat{P}) \ \varphi_\alpha(q_{p(1)}) \otimes \varphi_\beta(q_{p(2)}) \otimes \varphi_\gamma(q_{p(3)}) \otimes \cdots} \\=& N \frac{1}{N!} \sum_{k_i} \braket{\varphi_{k_i}|\hat{g}|\varphi_{k_i}} \sum_{\{\hat{P}\}} \braket{\varphi_\alpha(q_{p(1)})|\varphi_\alpha(q_{p(1)})} \otimes \braket{\varphi_\beta(q_{p(2)})|\varphi_\beta(q_{p(2)})} \otimes \braket{\varphi_\gamma(q_{p(3)})|\varphi_\gamma(q_{p(3)})} \otimes \cdots \\=& N \frac{1}{N!} \sum_{k_i} \braket{\varphi_{k_i}|\hat{g}|\varphi_{k_i}} (N-1)! \\=& \sum_{k_i} f_{k_ik_i} \end{aligned} \tag{1.9.2} = = = = ⟨ ψ α , β , γ , ⋯ ∣ F ^ ∣ ψ α , β , γ , ⋯ ⟩ N ⟨ N ! 1 { P ^ } ∑ δ ( P ^ ) φ α ( q p ( 1 ) ) ⊗ φ β ( q p ( 2 ) ) ⊗ φ γ ( q p ( 3 ) ) ⊗ ⋯ ∣ f ^ ( q 1 , q 2 ) ∣ N ! 1 { P ^ } ∑ δ ( P ^ ) φ α ( q p ( 1 ) ) ⊗ φ β ( q p ( 2 ) ) ⊗ φ γ ( q p ( 3 ) ) ⊗ ⋯ ⟩ N N ! 1 k i ∑ ⟨ φ k i ∣ g ^ ∣ φ k i ⟩ { P ^ } ∑ ⟨ φ α ( q p ( 1 ) ) ∣ φ α ( q p ( 1 ) ) ⟩ ⊗ ⟨ φ β ( q p ( 2 ) ) ∣ φ β ( q p ( 2 ) ) ⟩ ⊗ ⟨ φ γ ( q p ( 3 ) ) ∣ φ γ ( q p ( 3 ) ) ⟩ ⊗ ⋯ N N ! 1 k i ∑ ⟨ φ k i ∣ g ^ ∣ φ k i ⟩ ( N − 1 ) ! k i ∑ f k i k i ( 1 . 9 . 2 )
而用粒子数表象,结果如下:
⟨ ⋯ , k 3 , k 2 , k 1 ∣ G ^ ∣ k 1 , k 2 , k 3 , ⋯ ⟩ = ∑ α β f α β ⟨ ⋯ , k 3 , k 2 , k 1 ∣ C ^ α † C ^ β ∣ k 1 , k 2 , k 3 , ⋯ ⟩ = ∑ α β f α β ⟨ ⋯ , k 3 , k 2 , k 1 ∣ C ^ α † C ^ β ∣ k 1 , k 2 , k 3 , ⋯ , k i , ⋯ ⟩ ∑ k i δ β , k i ( − 1 ) i − 1 = ∑ α ∑ k i ( − 1 ) i − 1 f α k i ⟨ ⋯ , k 3 , k 2 , k 1 ∣ C ^ α † ∣ k 1 , k 2 , k 3 , ⋯ , n k i = 0 , ⋯ ⟩ δ α , k i ( − 1 ) i − 1 = ∑ k i f k i k i (1.9.3) \begin{aligned} & \braket{\cdots,k_3,k_2,k_1|\hat{G}|k_1,k_2,k_3,\cdots} \\=& \sum_{\alpha\beta} f_{\alpha\beta} \braket{\cdots,k_3,k_2,k_1|\hat{C}^\dagger_\alpha \hat{C}_\beta|k_1,k_2,k_3,\cdots} \\=& \sum_{\alpha\beta} f_{\alpha\beta} \braket{\cdots,k_3,k_2,k_1|\hat{C}^\dagger_\alpha \hat{C}_\beta|k_1,k_2,k_3,\cdots,k_i,\cdots} \sum_{k_i} \delta_{\beta,k_i} (-1)^{i-1} \\=& \sum_{\alpha} \sum_{k_i} (-1)^{i-1} f_{\alpha k_i} \braket{\cdots,k_3,k_2,k_1|\hat{C}^\dagger_\alpha|k_1,k_2,k_3,\cdots,n_{k_i}=0,\cdots} \delta_{\alpha,k_i} (-1)^{i-1} \\=& \sum_{k_i} f_{k_i k_i} \end{aligned} \tag{1.9.3} = = = = ⟨ ⋯ , k 3 , k 2 , k 1 ∣ G ^ ∣ k 1 , k 2 , k 3 , ⋯ ⟩ α β ∑ f α β ⟨ ⋯ , k 3 , k 2 , k 1 ∣ C ^ α † C ^ β ∣ k 1 , k 2 , k 3 , ⋯ ⟩ α β ∑ f α β ⟨ ⋯ , k 3 , k 2 , k 1 ∣ C ^ α † C ^ β ∣ k 1 , k 2 , k 3 , ⋯ , k i , ⋯ ⟩ k i ∑ δ β , k i ( − 1 ) i − 1 α ∑ k i ∑ ( − 1 ) i − 1 f α k i ⟨ ⋯ , k 3 , k 2 , k 1 ∣ C ^ α † ∣ k 1 , k 2 , k 3 , ⋯ , n k i = 0 , ⋯ ⟩ δ α , k i ( − 1 ) i − 1 k i ∑ f k i k i ( 1 . 9 . 3 )
因此可以验证两种表象计算出了的对角矩阵元是完全相等的。值得注意的是,上两式的最终结果中的∑ k i \sum_{k_i} ∑ k i 求和,是对原本就有费米子占据的态的求和,若一些态是没有被费米子占据的,那么它就对这个矩阵元没有贡献。 2. 对于非对角矩阵元,只有初态和末态之间最多相差一个单粒子态,否则矩阵元为零。这种矩阵元,用波函数坐标表象计算如下:
⟨ ψ k 1 , ⋯ , n k i = 0 , ⋯ , k j , ⋯ ∣ F ^ ∣ ψ k 1 , ⋯ , k i , ⋯ , n k j = 0 , ⋯ ⟩ = N ⟨ ψ k 1 , ⋯ , n k i = 0 , ⋯ , k j , ⋯ ∣ f ^ ∣ ψ k 1 , ⋯ , k i , ⋯ , n k j = 0 , ⋯ ⟩ = N ⟨ 1 N ! ∑ { P ^ } δ ( P ^ ) ⋯ ⊗ φ k i − 1 ( q p i − 1 ) ⊗ φ k i + 1 ( q p i ) ⊗ ⋯ φ k j − 1 ( q p j − 2 ) ⊗ φ k j ( q p j − 1 ) ⊗ φ k j + 1 ( q p j ) ⊗ ⋯ ∣ f ^ ∣ 1 N ! ∑ { P ^ } δ ( P ^ ) ⋯ ⊗ φ k i − 1 ( q p i − 1 ) ⊗ φ k i ( q p i ) ⊗ φ k i + 1 ( q p i + 1 ) ⊗ ⋯ ⊗ φ k j − 1 ( q p j − 1 ) ⊗ φ k j + 1 ( q p j ) ⊗ ⋯ ⟩ (用连续的相邻对换将上面的 φ k i 从自由度 q p i 移至 p j − 1 的位置,由于每次对换给出一个因子 ( − 1 ) ,因此会多出一个 ( − 1 ) ∑ a = i + 1 j − 1 n k a ) = N ( − 1 ) ∑ a = i + 1 j − 1 n k a ⟨ 1 N ! ∑ { P ^ } δ ( P ^ ) ⋯ ⊗ φ k i − 1 ( q p i − 1 ) ⊗ φ k i + 1 ( q p i ) ⊗ ⋯ φ k j − 1 ( q p j − 2 ) ⊗ φ k j ( q p j − 1 ) ⊗ φ k j + 1 ( q p j ) ⊗ ⋯ ∣ f ^ ∣ 1 N ! ∑ { P ^ } δ ( P ^ ) ⋯ ⊗ φ k i − 1 ( q p i − 1 ) ⊗ φ k i + 1 ( q p i ) ⊗ ⋯ φ k j − 1 ( q p j − 2 ) ⊗ φ k i ( q p j − 1 ) ⊗ φ k j + 1 ( q p j ) ⊗ ⋯ ⟩ = N ( − 1 ) ∑ a = i + 1 j − 1 n k a 1 N ! ⟨ φ k j ∣ f ^ ∣ φ k i ⟩ ∑ { P ^ } ⋯ ⟨ φ k i − 1 ( q p i − 1 ) ∣ φ k i − 1 ( q p i − 1 ) ⟩ ⊗ ⟨ φ k i + 1 ( q p i ) ∣ φ k i + 1 ( q p i ) ⟩ ⊗ ⋯ ⊗ ⟨ φ k j − 1 ( q p j − 2 ) ∣ φ k j − 1 ( q p j − 2 ) ⟩ ⊗ ⟨ φ k j + 1 ( q p j ) ∣ φ k j + 1 ( q p j ) ⟩ ⊗ ⋯ = N ( − 1 ) ∑ a = i + 1 j − 1 n k a 1 N ! ⟨ φ k j ∣ f ^ ∣ φ k i ⟩ ( N − 1 ) ! = ( − 1 ) ∑ a = i + 1 j − 1 n k a f k j k i (1.9.4) \begin{aligned} & \braket{\psi_{k_1,\cdots,n_{k_i}=0,\cdots,k_j,\cdots}|\hat{F}|\psi_{k_1,\cdots,k_i,\cdots,n_{k_j}=0,\cdots}} \\=& N \braket{\psi_{k_1,\cdots,n_{k_i}=0,\cdots,k_j,\cdots}|\hat{f}|\psi_{k_1,\cdots,k_i,\cdots,n_{k_j}=0,\cdots}} \\=& N \bra{\frac{1}{\sqrt{N!}} \sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \varphi_{k_{i-1}}(q_{p_{i-1}}) \otimes \varphi_{k_{i+1}}(q_{p_{i}}) \otimes \cdots \varphi_{k_{j-1}}(q_{p_{j-2}}) \otimes \varphi_{k_{j}}(q_{p_{j-1}}) \otimes \varphi_{k_{j+1}}(q_{p_{j}}) \otimes \cdots} \\ & \ \hat{f} \ket{\frac{1}{\sqrt{N!}} \sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \varphi_{k_{i-1}}(q_{p_{i-1}}) \otimes \varphi_{k_{i}}(q_{p_{i}}) \otimes \varphi_{k_{i+1}}(q_{p_{i+1}}) \otimes \cdots \otimes\varphi_{k_{j-1}}(q_{p_{j-1}}) \otimes \varphi_{k_{j+1}}(q_{p_{j}}) \otimes \cdots} \\ & \text{\footnotesize (用连续的相邻对换将上面的$\varphi_{k_{i}}$从自由度$q_{p_{i}}$移至$p_{j-1}$的位置,由于每次对换给出一个因子$(-1)$,因此会多出一个$(-1)^{\sum_{a=i+1}^{j-1}n_{k_a}}$)} \\=& N (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} \bra{\frac{1}{\sqrt{N!}} \sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \varphi_{k_{i-1}}(q_{p_{i-1}}) \otimes \varphi_{k_{i+1}}(q_{p_{i}}) \otimes \cdots \varphi_{k_{j-1}}(q_{p_{j-2}}) \otimes \varphi_{k_{j}}(q_{p_{j-1}}) \otimes \varphi_{k_{j+1}}(q_{p_{j}}) \otimes \cdots} \\ & \ \hat{f} \ket{\frac{1}{\sqrt{N!}} \sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \varphi_{k_{i-1}}(q_{p_{i-1}}) \otimes \varphi_{k_{i+1}}(q_{p_{i}}) \otimes \cdots \varphi_{k_{j-1}}(q_{p_{j-2}}) \otimes \varphi_{k_{i}}(q_{p_{j-1}}) \otimes \varphi_{k_{j+1}}(q_{p_{j}}) \otimes \cdots} \\=& N (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} \frac{1}{N!} \braket{\varphi_{k_j}|\hat{f}|\varphi_{k_i}} \sum_{\{\hat{P}\}} \cdots \braket{\varphi_{k_{i-1}}(q_{p_{i-1}})|\varphi_{k_{i-1}}(q_{p_{i-1}})} \otimes \braket{\varphi_{k_{i+1}}(q_{p_{i}})|\varphi_{k_{i+1}}(q_{p_{i}})} \otimes \cdots \otimes \\ & \ \braket{\varphi_{k_{j-1}}(q_{p_{j-2}})|\varphi_{k_{j-1}}(q_{p_{j-2}})} \otimes \braket{\varphi_{k_{j+1}}(q_{p_{j}})|\varphi_{k_{j+1}}(q_{p_{j}})} \otimes \cdots \\=& N (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} \frac{1}{N!} \braket{\varphi_{k_j}|\hat{f}|\varphi_{k_i}} (N-1)! \\=& (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} f_{k_jk_i} \end{aligned} \tag{1.9.4} = = = = = = ⟨ ψ k 1 , ⋯ , n k i = 0 , ⋯ , k j , ⋯ ∣ F ^ ∣ ψ k 1 , ⋯ , k i , ⋯ , n k j = 0 , ⋯ ⟩ N ⟨ ψ k 1 , ⋯ , n k i = 0 , ⋯ , k j , ⋯ ∣ f ^ ∣ ψ k 1 , ⋯ , k i , ⋯ , n k j = 0 , ⋯ ⟩ N ⟨ N ! 1 { P ^ } ∑ δ ( P ^ ) ⋯ ⊗ φ k i − 1 ( q p i − 1 ) ⊗ φ k i + 1 ( q p i ) ⊗ ⋯ φ k j − 1 ( q p j − 2 ) ⊗ φ k j ( q p j − 1 ) ⊗ φ k j + 1 ( q p j ) ⊗ ⋯ ∣ f ^ ∣ N ! 1 { P ^ } ∑ δ ( P ^ ) ⋯ ⊗ φ k i − 1 ( q p i − 1 ) ⊗ φ k i ( q p i ) ⊗ φ k i + 1 ( q p i + 1 ) ⊗ ⋯ ⊗ φ k j − 1 ( q p j − 1 ) ⊗ φ k j + 1 ( q p j ) ⊗ ⋯ ⟩ ( 用连续的相邻对换将上面的 φ k i 从自由度 q p i 移至 p j − 1 的位置,由于每次对换给出一个因子 ( −1 ) , 因此会多出一个 ( −1 ) ∑ a = i + 1 j − 1 n k a ) N ( − 1 ) ∑ a = i + 1 j − 1 n k a ⟨ N ! 1 { P ^ } ∑ δ ( P ^ ) ⋯ ⊗ φ k i − 1 ( q p i − 1 ) ⊗ φ k i + 1 ( q p i ) ⊗ ⋯ φ k j − 1 ( q p j − 2 ) ⊗ φ k j ( q p j − 1 ) ⊗ φ k j + 1 ( q p j ) ⊗ ⋯ ∣ f ^ ∣ N ! 1 { P ^ } ∑ δ ( P ^ ) ⋯ ⊗ φ k i − 1 ( q p i − 1 ) ⊗ φ k i + 1 ( q p i ) ⊗ ⋯ φ k j − 1 ( q p j − 2 ) ⊗ φ k i ( q p j − 1 ) ⊗ φ k j + 1 ( q p j ) ⊗ ⋯ ⟩ N ( − 1 ) ∑ a = i + 1 j − 1 n k a N ! 1 ⟨ φ k j ∣ f ^ ∣ φ k i ⟩ { P ^ } ∑ ⋯ ⟨ φ k i − 1 ( q p i − 1 ) ∣ φ k i − 1 ( q p i − 1 ) ⟩ ⊗ ⟨ φ k i + 1 ( q p i ) ∣ φ k i + 1 ( q p i ) ⟩ ⊗ ⋯ ⊗ ⟨ φ k j − 1 ( q p j − 2 ) ∣ φ k j − 1 ( q p j − 2 ) ⟩ ⊗ ⟨ φ k j + 1 ( q p j ) ∣ φ k j + 1 ( q p j ) ⟩ ⊗ ⋯ N ( − 1 ) ∑ a = i + 1 j − 1 n k a N ! 1 ⟨ φ k j ∣ f ^ ∣ φ k i ⟩ ( N − 1 ) ! ( − 1 ) ∑ a = i + 1 j − 1 n k a f k j k i ( 1 . 9 . 4 )
在粒子数表象中,我们有:
⟨ ⋯ , n k j = 1 , ⋯ , n k i = 0 , ⋯ ∣ G ^ ∣ ⋯ , n k i = 1 , ⋯ , n k j = 0 , ⋯ ⟩ = ∑ α β f α β ⟨ ⋯ , n k j = 1 , ⋯ , n k i = 0 , ⋯ ∣ C ^ α † C ^ β ∣ ⋯ , n k i = 1 , ⋯ , n k j = 0 , ⋯ ⟩ = ∑ α β f α β ⟨ ⋯ , n k j = 1 , ⋯ , n k i = 0 , ⋯ ∣ C ^ α † C ^ β ∣ ⋯ , n k i = 1 , ⋯ , n k j = 0 , ⋯ ⟩ δ β , k i = ∑ α f α k i ⟨ ⋯ , n k j = 1 , ⋯ , n k i = 0 , ⋯ ∣ C ^ α † ∣ ⋯ , n k i = 0 , ⋯ , n k j = 0 , ⋯ ⟩ ( − 1 ) ∑ a = 1 i − 1 n k a δ α , k j = f k j k i ( − 1 ) ∑ a = 1 i − 1 n k a [ ( − 1 ) ∑ a = 1 i − 1 n k a ( − 1 ) ∑ a = i + 1 j − 1 n k a ] 注意这里是因为 n k i = 0 = ( − 1 ) ∑ a = i + 1 j − 1 n k a f k j k i (1.9.5) \begin{aligned} & \braket{\cdots,n_{k_j}=1,\cdots,n_{k_i}=0,\cdots|\hat{G}|\cdots,n_{k_i}=1,\cdots,n_{k_j}=0,\cdots} \\=& \sum_{\alpha\beta} f_{\alpha\beta} \braket{\cdots,n_{k_j}=1,\cdots,n_{k_i}=0,\cdots|\hat{C}^\dagger_\alpha \hat{C}_\beta|\cdots,n_{k_i}=1,\cdots,n_{k_j}=0,\cdots} \\=& \sum_{\alpha\beta} f_{\alpha\beta} \braket{\cdots,n_{k_j}=1,\cdots,n_{k_i}=0,\cdots|\hat{C}^\dagger_\alpha \hat{C}_\beta|\cdots,n_{k_i}=1,\cdots,n_{k_j}=0,\cdots} \delta_{\beta,k_i} \\=& \sum_{\alpha} f_{\alpha k_i} \braket{\cdots,n_{k_j}=1,\cdots,n_{k_i}=0,\cdots|\hat{C}^\dagger_\alpha|\cdots,n_{k_i}=0,\cdots,n_{k_j}=0,\cdots} (-1)^{\sum_{a=1}^{i-1}n_{k_a}} \delta_{\alpha,k_j} \\=& f_{k_jk_i} (-1)^{\sum_{a=1}^{i-1}n_{k_a}} [(-1)^{\sum_{a=1}^{i-1}n_{k_a}} (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}}] \textcolor{red}{注意这里是因为n_{k_i}=0} \\=& (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} f_{k_jk_i} \end{aligned} \tag{1.9.5} = = = = = ⟨ ⋯ , n k j = 1 , ⋯ , n k i = 0 , ⋯ ∣ G ^ ∣ ⋯ , n k i = 1 , ⋯ , n k j = 0 , ⋯ ⟩ α β ∑ f α β ⟨ ⋯ , n k j = 1 , ⋯ , n k i = 0 , ⋯ ∣ C ^ α † C ^ β ∣ ⋯ , n k i = 1 , ⋯ , n k j = 0 , ⋯ ⟩ α β ∑ f α β ⟨ ⋯ , n k j = 1 , ⋯ , n k i = 0 , ⋯ ∣ C ^ α † C ^ β ∣ ⋯ , n k i = 1 , ⋯ , n k j = 0 , ⋯ ⟩ δ β , k i α ∑ f α k i ⟨ ⋯ , n k j = 1 , ⋯ , n k i = 0 , ⋯ ∣ C ^ α † ∣ ⋯ , n k i = 0 , ⋯ , n k j = 0 , ⋯ ⟩ ( − 1 ) ∑ a = 1 i − 1 n k a δ α , k j f k j k i ( − 1 ) ∑ a = 1 i − 1 n k a [ ( − 1 ) ∑ a = 1 i − 1 n k a ( − 1 ) ∑ a = i + 1 j − 1 n k a ] 注 意 这 里 是 因 为 n k i = 0 ( − 1 ) ∑ a = i + 1 j − 1 n k a f k j k i ( 1 . 9 . 5 )
两者给出的结果完全相同。
# 二体算符\quad 对于费米子的二体算符,在粒子数表象中可以被写为:
G ^ = 1 2 ∑ α ′ β ∑ α β g α ′ β ′ , α β C ^ α ′ † C ^ β ′ † C ^ β C ^ α g α ′ β ′ , α β = ⟨ ψ α ′ ψ β ′ ∣ g ^ ∣ ψ α ψ β ⟩ = ∫ d q 1 d q 2 ψ α ′ ∗ ( q 1 ) ψ β ′ ∗ ( q 2 ) g ^ ( q 1 , q 2 ) ψ α ( q 1 ) ψ β ( q 2 ) (1.9.6) \begin{aligned} \hat{G} &= \frac{1}{2} \sum_{\alpha'\beta} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha} \\ g_{\alpha'\beta',\alpha\beta} &= \braket{\psi_{\alpha'}\psi_{\beta'}|\hat{g}|\psi_{\alpha}\psi_{\beta}} = \int dq_1 dq_2 \ \psi_{\alpha'}^*(q_1) \psi_{\beta'}^*(q_2) \hat{g}(q_1,q_2) \psi_{\alpha}(q_1) \psi_{\beta}(q_2) \end{aligned} \tag{1.9.6} G ^ g α ′ β ′ , α β = 2 1 α ′ β ∑ α β ∑ g α ′ β ′ , α β C ^ α ′ † C ^ β ′ † C ^ β C ^ α = ⟨ ψ α ′ ψ β ′ ∣ g ^ ∣ ψ α ψ β ⟩ = ∫ d q 1 d q 2 ψ α ′ ∗ ( q 1 ) ψ β ′ ∗ ( q 2 ) g ^ ( q 1 , q 2 ) ψ α ( q 1 ) ψ β ( q 2 ) ( 1 . 9 . 6 )
\quad 下面我们同样来计算它的各个矩阵元:
对于对角矩阵元,在波函数坐标表象下计算,结果如下: ⟨ ψ n k 1 , n k 2 , ⋯ ∣ G ^ ∣ ψ n k 1 , n k 2 , ⋯ ⟩ = N ( N − 1 ) 2 ⟨ ψ n k 1 , n k 2 , ⋯ ∣ g ^ ( q 1 , q 2 ) ∣ ψ n k 1 , n k 2 , ⋯ ⟩ = N ( N − 1 ) 2 ⟨ 1 N ! ∑ { P ^ } δ ( P ^ ) φ k 1 ( q p 1 ) ⊗ φ k 2 ( q p 2 ) ⊗ ⋯ ∣ g ^ ( q 1 , q 2 ) ∣ 1 N ! ∑ { P ^ } δ ( P ^ ) φ k 1 ( q p 1 ) ⊗ φ k 2 ( q p 2 ) ⊗ ⋯ ⟩ = N ( N − 1 ) 2 1 N ! ∑ i < j ⟨ ∑ { P ^ } δ ( P ^ ) φ k i ( q p 1 ) ⊗ φ k j ( q p 2 ) ∣ g ^ ∣ ∑ { P ^ } δ ( P ^ ) φ k i ( q p 1 ) ⊗ φ k j ( q p 2 ) ⟩ ∑ { P ^ } ⋯ ⊗ ⟨ φ k i − 1 ( q p i − 1 ) ∣ φ k i − 1 ( q p i − 1 ) ⟩ ⊗ ⟨ φ k i + 1 ( q p i + 1 ) ∣ φ k i + 1 ( q p i + 1 ) ⟩ ⊗ ⋯ ⊗ ⟨ φ k j − 1 ( q p j − 1 ) ∣ φ k j − 1 ( q p j − 1 ) ⟩ ⊗ ⟨ φ k j + 1 ( q p j + 1 ) ∣ φ k j + 1 ( q p j + 1 ) ⟩ ⊗ ⋯ = N ( N − 1 ) 2 1 N ! ∑ i < j [ ⟨ φ k i ( q 1 ) φ k j ( q 2 ) ∣ g ( q 1 , q 2 ) ∣ φ k i ( q 1 ) φ k j ( q 2 ) ⟩ − ⟨ φ k i ( q 1 ) φ k j ( q 2 ) ∣ g ( q 1 , q 2 ) ∣ φ k i ( q 2 ) φ k j ( q 1 ) ⟩ − ⟨ φ k i ( q 2 ) φ k j ( q 1 ) ∣ g ( q 1 , q 2 ) ∣ φ k i ( q 1 ) φ k j ( q 2 ) ⟩ + ⟨ φ k i ( q 2 ) φ k j ( q 1 ) ∣ g ( q 1 , q 2 ) ∣ φ k i ( q 2 ) φ k j ( q 1 ) ⟩ ] ( N − 2 ) ! = 1 2 ∑ i < j 2 [ ⟨ φ k i φ k j ∣ g ^ ∣ φ k i φ k j ⟩ − ⟨ φ k i φ k j ∣ g ^ ∣ φ k j φ k i ⟩ ] = ∑ i < j ( g k i k j , k i k j − g k i k j , k j k i ) = ∑ i < j n k i n k j ( g k i k j , k i k j − g k i k j , k j k i ) 最后一步等式中 n k i n k j 的出现,这样写是为了更明确一点:若 φ k i 和 φ k j 不出现在 ψ n k 1 , n k 2 , ⋯ 中,则该项的贡献为零。 若你不写出 n k i n k j ,你一定要明确知道求和 ∑ i < j 是只对 ψ n k 1 , n k 2 , ⋯ 中出现的态作考虑。 (1.9.7) \begin{aligned} & \braket{\psi_{n_{k_1},n_{k_2},\cdots}|\hat{G}|\psi_{n_{k_1},n_{k_2},\cdots}} \\=& \frac{N(N-1)}{2} \braket{\psi_{n_{k_1},n_{k_2},\cdots}|\hat{g}(q_1,q_2)|\psi_{n_{k_1},n_{k_2},\cdots}} \\=& \frac{N(N-1)}{2} \bra{\frac{1}{\sqrt{N!}} \sum_{\{\hat{P}\}} \delta(\hat{P}) \ \varphi_{k_1}(q_{p_1}) \otimes \varphi_{k_2}(q_{p_2}) \otimes \cdots} \hat{g}(q_1,q_2) \ket{\frac{1}{\sqrt{N!}} \sum_{\{\hat{P}\}} \delta(\hat{P}) \ \varphi_{k_1}(q_{p_1}) \otimes \varphi_{k_2}(q_{p_2}) \otimes \cdots} \\=& \frac{N(N-1)}{2} \frac{1}{N!} \sum_{i<j} \braket{\sum_{\{\hat{P}\}} \delta(\hat{P}) \ \varphi_{k_i}(q_{p_1}) \otimes \varphi_{k_j}(q_{p_2})|\hat{g}|\sum_{\{\hat{P}\}} \delta(\hat{P}) \ \varphi_{k_i}(q_{p_1}) \otimes \varphi_{k_j}(q_{p_2})} \\ & \ \sum_{\{\hat{P}\}} \cdots \otimes \braket{\varphi_{k_{i-1}}(q_{p_{i-1}})|\varphi_{k_{i-1}}(q_{p_{i-1}})} \otimes \braket{\varphi_{k_{i+1}}(q_{p_{i+1}})|\varphi_{k_{i+1}}(q_{p_{i+1}})} \otimes \cdots \otimes \\ & \ \braket{\varphi_{k_{j-1}}(q_{p_{j-1}})|\varphi_{k_{j-1}}(q_{p_{j-1}})} \otimes \braket{\varphi_{k_{j+1}}(q_{p_{j+1}})|\varphi_{k_{j+1}}(q_{p_{j+1}})} \otimes \cdots \\=& \frac{N(N-1)}{2} \frac{1}{N!} \sum_{i<j} \big[\braket{\varphi_{k_i}(q_1) \varphi_{k_j}(q_2)|g(q_1,q_2)|\varphi_{k_i}(q_1) \varphi_{k_j}(q_2)} - \braket{\varphi_{k_i}(q_1) \varphi_{k_j}(q_2)|g(q_1,q_2)|\varphi_{k_i}(q_2) \varphi_{k_j}(q_1)} \\ & \ -\braket{\varphi_{k_i}(q_2) \varphi_{k_j}(q_1)|g(q_1,q_2)|\varphi_{k_i}(q_1) \varphi_{k_j}(q_2)} + \braket{\varphi_{k_i}(q_2) \varphi_{k_j}(q_1)|g(q_1,q_2)|\varphi_{k_i}(q_2) \varphi_{k_j}(q_1)}\big] (N-2)! \\=& \frac{1}{2} \sum_{i<j} 2 [\braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_i}\varphi_{k_j}}-\braket{\varphi_{k_i}\varphi_{k_j}|\hat{g}|\varphi_{k_j}\varphi_{k_i}}] \\=& \sum_{i<j} (g_{k_ik_j,k_ik_j} - g_{k_ik_j,k_jk_i}) \textcolor{red}{= \sum_{i<j} n_{k_i} n_{k_j} (g_{k_ik_j,k_ik_j} - g_{k_ik_j,k_jk_i})} \\ & \textcolor{red}{\small 最后一步等式中n_{k_i} n_{k_j}的出现,这样写是为了更明确一点:若\varphi_{k_i}和\varphi_{k_j}不出现在\psi_{n_{k_1},n_{k_2},\cdots}中,则该项的贡献为零。} \\ & \textcolor{red}{\small 若你不写出n_{k_i} n_{k_j},你一定要明确知道求和\sum_{i<j}是只对\psi_{n_{k_1},n_{k_2},\cdots}中出现的态作考虑。} \end{aligned} \tag{1.9.7} = = = = = = ⟨ ψ n k 1 , n k 2 , ⋯ ∣ G ^ ∣ ψ n k 1 , n k 2 , ⋯ ⟩ 2 N ( N − 1 ) ⟨ ψ n k 1 , n k 2 , ⋯ ∣ g ^ ( q 1 , q 2 ) ∣ ψ n k 1 , n k 2 , ⋯ ⟩ 2 N ( N − 1 ) ⟨ N ! 1 { P ^ } ∑ δ ( P ^ ) φ k 1 ( q p 1 ) ⊗ φ k 2 ( q p 2 ) ⊗ ⋯ ∣ g ^ ( q 1 , q 2 ) ∣ N ! 1 { P ^ } ∑ δ ( P ^ ) φ k 1 ( q p 1 ) ⊗ φ k 2 ( q p 2 ) ⊗ ⋯ ⟩ 2 N ( N − 1 ) N ! 1 i < j ∑ ⟨ { P ^ } ∑ δ ( P ^ ) φ k i ( q p 1 ) ⊗ φ k j ( q p 2 ) ∣ g ^ ∣ { P ^ } ∑ δ ( P ^ ) φ k i ( q p 1 ) ⊗ φ k j ( q p 2 ) ⟩ { P ^ } ∑ ⋯ ⊗ ⟨ φ k i − 1 ( q p i − 1 ) ∣ φ k i − 1 ( q p i − 1 ) ⟩ ⊗ ⟨ φ k i + 1 ( q p i + 1 ) ∣ φ k i + 1 ( q p i + 1 ) ⟩ ⊗ ⋯ ⊗ ⟨ φ k j − 1 ( q p j − 1 ) ∣ φ k j − 1 ( q p j − 1 ) ⟩ ⊗ ⟨ φ k j + 1 ( q p j + 1 ) ∣ φ k j + 1 ( q p j + 1 ) ⟩ ⊗ ⋯ 2 N ( N − 1 ) N ! 1 i < j ∑ [ ⟨ φ k i ( q 1 ) φ k j ( q 2 ) ∣ g ( q 1 , q 2 ) ∣ φ k i ( q 1 ) φ k j ( q 2 ) ⟩ − ⟨ φ k i ( q 1 ) φ k j ( q 2 ) ∣ g ( q 1 , q 2 ) ∣ φ k i ( q 2 ) φ k j ( q 1 ) ⟩ − ⟨ φ k i ( q 2 ) φ k j ( q 1 ) ∣ g ( q 1 , q 2 ) ∣ φ k i ( q 1 ) φ k j ( q 2 ) ⟩ + ⟨ φ k i ( q 2 ) φ k j ( q 1 ) ∣ g ( q 1 , q 2 ) ∣ φ k i ( q 2 ) φ k j ( q 1 ) ⟩ ] ( N − 2 ) ! 2 1 i < j ∑ 2 [ ⟨ φ k i φ k j ∣ g ^ ∣ φ k i φ k j ⟩ − ⟨ φ k i φ k j ∣ g ^ ∣ φ k j φ k i ⟩ ] i < j ∑ ( g k i k j , k i k j − g k i k j , k j k i ) = i < j ∑ n k i n k j ( g k i k j , k i k j − g k i k j , k j k i ) 最 后 一 步 等 式 中 n k i n k j 的 出 现 , 这 样 写 是 为 了 更 明 确 一 点 : 若 φ k i 和 φ k j 不 出 现 在 ψ n k 1 , n k 2 , ⋯ 中 , 则 该 项 的 贡 献 为 零 。 若 你 不 写 出 n k i n k j , 你 一 定 要 明 确 知 道 求 和 i < j ∑ 是 只 对 ψ n k 1 , n k 2 , ⋯ 中 出 现 的 态 作 考 虑 。 ( 1 . 9 . 7 )
而在粒子数表象下的计算结果如下:
⟨ ⋯ , n k 2 , n k 1 ∣ G ^ ∣ n k 1 , n k 2 , ⋯ ⟩ = 1 2 ∑ α ′ β ∑ α β g α ′ β ′ , α β ⟨ ⋯ , n k 2 , n k 1 ∣ C ^ α ′ † C ^ β ′ † C ^ β C ^ α ∣ n k 1 , n k 2 , ⋯ ⟩ = 1 2 ∑ α ′ ≠ β ∑ α ≠ β g α ′ β ′ , α β ⟨ ⋯ , n k 2 , n k 1 ∣ C ^ α ′ † C ^ β ′ † C ^ β C ^ α ∣ n k 1 , n k 2 , ⋯ ⟩ δ α ′ , α δ β ′ , β + 1 2 ∑ α ′ ≠ β ∑ α ≠ β g α ′ β ′ , α β ⟨ ⋯ , n k 2 , n k 1 ∣ C ^ α ′ † C ^ β ′ † C ^ β C ^ α ∣ n k 1 , n k 2 , ⋯ ⟩ δ α ′ , β δ β ′ , α = 1 2 ∑ α ≠ β g α β , α β ⟨ ⋯ , n k 2 , n k 1 ∣ C ^ α † C ^ β † C ^ β C ^ α ∣ n k 1 , n k 2 , ⋯ ⟩ + 1 2 ∑ α ≠ β g α β , β α ⟨ ⋯ , n k 2 , n k 1 ∣ C ^ α † C ^ β † C ^ α C ^ β ∣ n k 1 , n k 2 , ⋯ ⟩ 下面利用到 { C ^ α † , C ^ β † } = 0 和 { C ^ α † , C ^ β } = 0 = 1 2 ∑ α ≠ β g α β , α β ⟨ ⋯ , n k 2 , n k 1 ∣ C ^ β † C ^ β C ^ α † C ^ α ∣ n k 1 , n k 2 , ⋯ ⟩ − 1 2 ∑ α ≠ β g α β , β α ⟨ ⋯ , n k 2 , n k 1 ∣ C ^ α † C ^ α C ^ β † C ^ β ∣ n k 1 , n k 2 , ⋯ ⟩ = 1 2 ∑ α ≠ β g α β , α β ⟨ ⋯ , n k 2 , n k 1 ∣ n ^ β n ^ α ∣ n k 1 , n k 2 , ⋯ ⟩ − 1 2 ∑ α ≠ β g α β , β α ⟨ ⋯ , n k 2 , n k 1 ∣ n ^ α n ^ β ∣ n k 1 , n k 2 , ⋯ ⟩ = 1 2 ∑ α ≠ β n α n β ( g α β , α β − g α β , β α ) = ∑ i < j n k i n k j ( g k i k j , k i k j − g k i k j , k j k i ) (1.9.8) \begin{aligned} & \braket{\cdots,n_{k_2},n_{k_1}|\hat{G}|n_{k_1},n_{k_2},\cdots} \\=& \frac{1}{2} \sum_{\alpha'\beta} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,n_{k_2},n_{k_1}|\hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha}|n_{k_1},n_{k_2},\cdots} \\=& \frac{1}{2} \sum_{\alpha' \ne \beta} \sum_{\alpha \ne \beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,n_{k_2},n_{k_1}|\hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha}|n_{k_1},n_{k_2},\cdots} \delta_{\alpha',\alpha} \delta_{\beta',\beta} \\ & \ +\frac{1}{2} \sum_{\alpha' \ne \beta} \sum_{\alpha \ne \beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,n_{k_2},n_{k_1}|\hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha}|n_{k_1},n_{k_2},\cdots} \delta_{\alpha',\beta} \delta_{\beta',\alpha} \\=& \frac{1}{2} \sum_{\alpha \ne \beta} g_{\alpha\beta,\alpha\beta} \braket{\cdots,n_{k_2},n_{k_1}|\hat{C}^\dagger_{\alpha} \hat{C}^\dagger_{\beta} \hat{C}_{\beta} \hat{C}_{\alpha}|n_{k_1},n_{k_2},\cdots} \\ & \ +\frac{1}{2} \sum_{\alpha \ne \beta} g_{\alpha\beta,\beta\alpha} \braket{\cdots,n_{k_2},n_{k_1}|\hat{C}^\dagger_{\alpha} \hat{C}^\dagger_{\beta} \hat{C}_{\alpha} \hat{C}_{\beta}|n_{k_1},n_{k_2},\cdots} \\ & \textcolor{red}{\small 下面利用到\{\hat{C}^\dagger_\alpha,\hat{C}^\dagger_\beta\}=0和\{\hat{C}^\dagger_\alpha,\hat{C}_\beta\}=0} \\=& \frac{1}{2} \sum_{\alpha \ne \beta} g_{\alpha\beta,\alpha\beta} \braket{\cdots,n_{k_2},n_{k_1}|\hat{C}^\dagger_{\beta} \hat{C}_{\beta} \hat{C}^\dagger_{\alpha} \hat{C}_{\alpha}|n_{k_1},n_{k_2},\cdots} \\ & \ -\frac{1}{2} \sum_{\alpha \ne \beta} g_{\alpha\beta,\beta\alpha} \braket{\cdots,n_{k_2},n_{k_1}|\hat{C}^\dagger_{\alpha} \hat{C}_{\alpha} \hat{C}^\dagger_{\beta}\hat{C}_{\beta}|n_{k_1},n_{k_2},\cdots} \\=& \frac{1}{2} \sum_{\alpha \ne \beta} g_{\alpha\beta,\alpha\beta} \braket{\cdots,n_{k_2},n_{k_1}|\hat{n}_\beta\hat{n}_\alpha|n_{k_1},n_{k_2},\cdots} \\ & \ -\frac{1}{2} \sum_{\alpha \ne \beta} g_{\alpha\beta,\beta\alpha} \braket{\cdots,n_{k_2},n_{k_1}|\hat{n}_\alpha\hat{n}_\beta|n_{k_1},n_{k_2},\cdots} \\=& \frac{1}{2} \sum_{\alpha \ne \beta} n_\alpha n_\beta (g_{\alpha\beta,\alpha\beta} - g_{\alpha\beta,\beta\alpha}) = \sum_{i<j} n_{k_i} n_{k_j} (g_{k_ik_j,k_ik_j} - g_{k_ik_j,k_jk_i}) \end{aligned} \tag{1.9.8} = = = = = = ⟨ ⋯ , n k 2 , n k 1 ∣ G ^ ∣ n k 1 , n k 2 , ⋯ ⟩ 2 1 α ′ β ∑ α β ∑ g α ′ β ′ , α β ⟨ ⋯ , n k 2 , n k 1 ∣ C ^ α ′ † C ^ β ′ † C ^ β C ^ α ∣ n k 1 , n k 2 , ⋯ ⟩ 2 1 α ′ = β ∑ α = β ∑ g α ′ β ′ , α β ⟨ ⋯ , n k 2 , n k 1 ∣ C ^ α ′ † C ^ β ′ † C ^ β C ^ α ∣ n k 1 , n k 2 , ⋯ ⟩ δ α ′ , α δ β ′ , β + 2 1 α ′ = β ∑ α = β ∑ g α ′ β ′ , α β ⟨ ⋯ , n k 2 , n k 1 ∣ C ^ α ′ † C ^ β ′ † C ^ β C ^ α ∣ n k 1 , n k 2 , ⋯ ⟩ δ α ′ , β δ β ′ , α 2 1 α = β ∑ g α β , α β ⟨ ⋯ , n k 2 , n k 1 ∣ C ^ α † C ^ β † C ^ β C ^ α ∣ n k 1 , n k 2 , ⋯ ⟩ + 2 1 α = β ∑ g α β , β α ⟨ ⋯ , n k 2 , n k 1 ∣ C ^ α † C ^ β † C ^ α C ^ β ∣ n k 1 , n k 2 , ⋯ ⟩ 下 面 利 用 到 { C ^ α † , C ^ β † } = 0 和 { C ^ α † , C ^ β } = 0 2 1 α = β ∑ g α β , α β ⟨ ⋯ , n k 2 , n k 1 ∣ C ^ β † C ^ β C ^ α † C ^ α ∣ n k 1 , n k 2 , ⋯ ⟩ − 2 1 α = β ∑ g α β , β α ⟨ ⋯ , n k 2 , n k 1 ∣ C ^ α † C ^ α C ^ β † C ^ β ∣ n k 1 , n k 2 , ⋯ ⟩ 2 1 α = β ∑ g α β , α β ⟨ ⋯ , n k 2 , n k 1 ∣ n ^ β n ^ α ∣ n k 1 , n k 2 , ⋯ ⟩ − 2 1 α = β ∑ g α β , β α ⟨ ⋯ , n k 2 , n k 1 ∣ n ^ α n ^ β ∣ n k 1 , n k 2 , ⋯ ⟩ 2 1 α = β ∑ n α n β ( g α β , α β − g α β , β α ) = i < j ∑ n k i n k j ( g k i k j , k i k j − g k i k j , k j k i ) ( 1 . 9 . 8 )
计算结果两者是完全一样的。
对于非对角矩阵元,只有一种不为零。它在波函数坐标表象中计算如下: ⟨ ψ ⋯ , n k i = 0 , ⋯ , n k j = 0 , ⋯ , k k , ⋯ , k l , ⋯ ∣ G ^ ∣ ψ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ = N ( N − 1 ) 2 ⟨ ψ ⋯ , n k i = 0 , ⋯ , n k j = 0 , ⋯ , k k , ⋯ , k l , ⋯ ∣ g ^ ( q 1 , q 2 ) ∣ ψ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ = N ( N − 1 ) 2 1 N ! ⟨ ∑ { P ^ } δ ( P ^ ) ⋯ ⊗ φ k i ⊗ ⋯ ⊗ φ k j ⊗ ⋯ ⊗ φ k k ( q p k − 2 ) ⋯ ⊗ φ k l ( q p l − 2 ) ⊗ ⋯ ∣ g ^ ( q 1 , q 2 ) ∣ ∑ { P ^ } δ ( P ^ ) ⋯ ⊗ φ k i ( q p i ) ⊗ ⋯ ⊗ φ k j ( q p j ) ⊗ ⋯ ⊗ φ k k ⊗ ⋯ ⊗ φ k l ⊗ ⋯ ⟩ (用连续的相邻对换将上面的 φ k j 从自由度 q p j 移至 p l − 2 的位置,会多出一个 ( − 1 ) ∑ a = j + 1 k − 1 n k a ( − 1 ) ∑ a = k + 1 l − 1 n k a ) = N ( N − 1 ) 2 1 N ! ⟨ ∑ { P ^ } δ ( P ^ ) ⋯ ⊗ φ k i ⊗ ⋯ ⊗ φ k j ⊗ ⋯ ⊗ φ k k ( q p k − 2 ) ⋯ ⊗ φ k l ( q p l − 2 ) ⊗ ⋯ ∣ g ^ ( q 1 , q 2 ) ∣ ∑ { P ^ } δ ( P ^ ) ⋯ ⊗ φ k i ( q p i ) ⊗ ⋯ ⊗ φ k l ⊗ ⋯ ⊗ φ k k ⊗ ⋯ ⊗ φ k j ( q p l − 2 ) ⊗ ⋯ ⟩ ( − 1 ) ∑ a = j + 1 k − 1 n k a ( − 1 ) ∑ a = k + 1 l − 1 n k a (再用连续的相邻对换将上面的 φ k i 从自由度 q p i 移至 p k − 2 的位置,会多出一个 ( − 1 ) ∑ a = i + 1 j − 1 n k a ( − 1 ) ∑ a = j + 1 k − 1 n k a ) = N ( N − 1 ) 2 1 N ! ⟨ ∑ { P ^ } δ ( P ^ ) ⋯ ⊗ φ k i ⊗ ⋯ ⊗ φ k j ⊗ ⋯ ⊗ φ k k ( q p k − 2 ) ⋯ ⊗ φ k l ( q p l − 2 ) ⊗ ⋯ ∣ g ^ ( q 1 , q 2 ) ∣ ∑ { P ^ } δ ( P ^ ) ⋯ ⊗ φ k k ⊗ ⋯ ⊗ φ k l ⊗ ⋯ ⊗ φ k i ( q p k − 2 ) ⊗ ⋯ ⊗ φ k j ( q p l − 2 ) ⊗ ⋯ ⟩ ( − 1 ) ∑ a = j + 1 k − 1 n k a ( − 1 ) ∑ a = k + 1 l − 1 n k a ( − 1 ) ∑ a = i + 1 j − 1 n k a ( − 1 ) ∑ a = j + 1 k − 1 n k a = N ( N − 1 ) 2 1 N ! ( − 1 ) ∑ a = i + 1 j − 1 n k a ( − 1 ) ∑ a = k + 1 l − 1 n k a ⟨ ∑ { P ^ } δ ( P ^ ) φ k k ( q p 1 ) ⊗ φ k l ( q p 2 ) ∣ g ^ ( q 1 , q 2 ) ∣ ∑ { P ^ } δ ( P ^ ) φ k i ( q p 1 ) ⊗ φ k j ( q p 2 ) ⟩ ∑ { P ^ } ⟨ φ k 1 ( q p 1 ) ∣ φ k 1 ( q p 1 ) ⟩ ⋯ ⟨ φ k i ∣ φ k i ⟩ ⋯ ⟨ φ k j ∣ φ k j ⟩ ⋯ ⟨ φ k k ∣ φ k k ⟩ ⋯ ⟨ φ k l ∣ φ k l ⟩ ⋯ ⟨ φ k N + 2 ( q p N − 2 ) ∣ φ k N + 2 ( q p N − 2 ) ⟩ = N ( N − 1 ) 2 1 N ! ( − 1 ) ∑ a = i + 1 j − 1 n k a ( − 1 ) ∑ a = k + 1 l − 1 n k a ( N − 2 ) ! [ ⟨ φ k k φ k l ∣ g ^ ∣ φ k i φ k j ⟩ − ⟨ φ k k φ k l ∣ g ^ ∣ φ k j φ k i ⟩ + ⟨ φ k l φ k k ∣ g ^ ∣ φ k i φ k j ⟩ − ⟨ φ k l φ k k ∣ g ^ ∣ φ k j φ k i ⟩ ] = ( − 1 ) ∑ a = i + 1 j − 1 n k a ( − 1 ) ∑ a = k + 1 l − 1 n k a [ ⟨ φ k k φ k l ∣ g ^ ∣ φ k i φ k j ⟩ − ⟨ φ k l φ k k ∣ g ^ ∣ φ k i φ k j ⟩ ] = ( − 1 ) ∑ a = i + 1 j − 1 n k a ( − 1 ) ∑ a = k + 1 l − 1 n k a ( g k k k l , k i k j − g k l k k , k i k j ) (1.9.9) \begin{aligned} & \braket{\psi_{\cdots,n_{k_i}=0,\cdots,n_{k_j}=0,\cdots,k_k,\cdots,k_l,\cdots}|\hat{G}|\psi_{\cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots}} \\=& \frac{N(N-1)}{2} \braket{\psi_{\cdots,n_{k_i}=0,\cdots,n_{k_j}=0,\cdots,k_k,\cdots,k_l,\cdots}|\hat{g}(q_1,q_2)|\psi_{\cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots}} \\=& \frac{N(N-1)}{2} \frac{1}{N!} \bra{\sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \xcancel{\varphi_{k_i}} \otimes \cdots \otimes \xcancel{\varphi_{k_j}} \otimes \cdots \otimes \varphi_{k_k}(q_{p_{k-2}}) \cdots \otimes \varphi_{k_l}(q_{p_{l-2}}) \otimes \cdots} \\ & \ \hat{g}(q_1,q_2) \ket{\sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \varphi_{k_i}(q_{p_{i}}) \otimes \cdots \otimes \varphi_{k_j}(q_{p_{j}}) \otimes \cdots \otimes \xcancel{\varphi_{k_k}} \otimes \cdots \otimes \xcancel{\varphi_{k_l}} \otimes \cdots} \\ & \text{\footnotesize (用连续的相邻对换将上面的$\varphi_{k_{j}}$从自由度$q_{p_{j}}$移至$p_{l-2}$的位置,会多出一个$(-1)^{\sum_{a=j+1}^{k-1}n_{k_a}} (-1)^{\sum_{a=k+1}^{l-1}n_{k_a}}$)} \\=& \frac{N(N-1)}{2} \frac{1}{N!} \bra{\sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \xcancel{\varphi_{k_i}} \otimes \cdots \otimes \xcancel{\varphi_{k_j}} \otimes \cdots \otimes \varphi_{k_k}(q_{p_{k-2}}) \cdots \otimes \varphi_{k_l}(q_{p_{l-2}}) \otimes \cdots} \\ & \ \hat{g}(q_1,q_2) \ket{\sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \varphi_{k_i}(q_{p_{i}}) \otimes \cdots \otimes \xcancel{\varphi_{k_l}} \otimes \cdots \otimes \xcancel{\varphi_{k_k}} \otimes \cdots \otimes \varphi_{k_j}(q_{p_{l-2}}) \otimes \cdots} \\ & \ (-1)^{\sum_{a=j+1}^{k-1}n_{k_a}} (-1)^{\sum_{a=k+1}^{l-1}n_{k_a}} \\ & \text{\footnotesize (再用连续的相邻对换将上面的$\varphi_{k_{i}}$从自由度$q_{p_{i}}$移至$p_{k-2}$的位置,会多出一个$(-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} (-1)^{\sum_{a=j+1}^{k-1}n_{k_a}}$)} \\=& \frac{N(N-1)}{2} \frac{1}{N!} \bra{\sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \xcancel{\varphi_{k_i}} \otimes \cdots \otimes \xcancel{\varphi_{k_j}} \otimes \cdots \otimes \varphi_{k_k}(q_{p_{k-2}}) \cdots \otimes \varphi_{k_l}(q_{p_{l-2}}) \otimes \cdots} \\ & \ \hat{g}(q_1,q_2) \ket{\sum_{\{\hat{P}\}} \delta(\hat{P}) \cdots \otimes \xcancel{\varphi_{k_k}} \otimes \cdots \otimes \xcancel{\varphi_{k_l}} \otimes \cdots \otimes \varphi_{k_i}(q_{p_{k-2}}) \otimes \cdots \otimes \varphi_{k_j}(q_{p_{l-2}}) \otimes \cdots} \\ & \ (-1)^{\sum_{a=j+1}^{k-1}n_{k_a}} (-1)^{\sum_{a=k+1}^{l-1}n_{k_a}} (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} (-1)^{\sum_{a=j+1}^{k-1}n_{k_a}} \\=& \frac{N(N-1)}{2} \frac{1}{N!} (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} (-1)^{\sum_{a=k+1}^{l-1}n_{k_a}} \bra{\sum_{\{\hat{P}\}} \delta(\hat{P}) \varphi_{k_k}(q_{p_{1}}) \otimes \varphi_{k_l}(q_{p_{2}})} \hat{g}(q_1,q_2) \ket{\sum_{\{\hat{P}\}} \delta(\hat{P}) \varphi_{k_i}(q_{p_{1}}) \otimes \varphi_{k_j}(q_{p_{2}})} \\ & \ \sum_{\{\hat{P}\}} \braket{\varphi_{k_1}(q_{p_1})|\varphi_{k_1}(q_{p_1})} \cdots \xcancel{\braket{\varphi_{k_i}|\varphi_{k_i}}} \cdots \xcancel{\braket{\varphi_{k_j}|\varphi_{k_j}}} \cdots \xcancel{\braket{\varphi_{k_k}|\varphi_{k_k}}} \cdots \xcancel{\braket{\varphi_{k_l}|\varphi_{k_l}}} \cdots \braket{\varphi_{k_{N+2}}(q_{p_{N-2}})|\varphi_{k_{N+2}}(q_{p_{N-2}})} \\=& \frac{N(N-1)}{2} \frac{1}{N!} (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} (-1)^{\sum_{a=k+1}^{l-1}n_{k_a}} (N-2)! \\ & \ [\braket{\varphi_{k_k}\varphi_{k_l}|\hat{g}|\varphi_{k_i}\varphi_{k_j}} - \braket{\varphi_{k_k}\varphi_{k_l}|\hat{g}|\varphi_{k_j}\varphi_{k_i}} + \braket{\varphi_{k_l}\varphi_{k_k}|\hat{g}|\varphi_{k_i}\varphi_{k_j}} - \braket{\varphi_{k_l}\varphi_{k_k}|\hat{g}|\varphi_{k_j}\varphi_{k_i}}] \\=& (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} (-1)^{\sum_{a=k+1}^{l-1}n_{k_a}} [\braket{\varphi_{k_k}\varphi_{k_l}|\hat{g}|\varphi_{k_i}\varphi_{k_j}} - \braket{\varphi_{k_l}\varphi_{k_k}|\hat{g}|\varphi_{k_i}\varphi_{k_j}}] \\=& (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} (-1)^{\sum_{a=k+1}^{l-1}n_{k_a}} (g_{k_kk_l,k_ik_j}-g_{k_lk_k,k_ik_j}) \end{aligned} \tag{1.9.9} = = = = = = = = ⟨ ψ ⋯ , n k i = 0 , ⋯ , n k j = 0 , ⋯ , k k , ⋯ , k l , ⋯ ∣ G ^ ∣ ψ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ 2 N ( N − 1 ) ⟨ ψ ⋯ , n k i = 0 , ⋯ , n k j = 0 , ⋯ , k k , ⋯ , k l , ⋯ ∣ g ^ ( q 1 , q 2 ) ∣ ψ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ 2 N ( N − 1 ) N ! 1 ⟨ { P ^ } ∑ δ ( P ^ ) ⋯ ⊗ φ k i ⊗ ⋯ ⊗ φ k j ⊗ ⋯ ⊗ φ k k ( q p k − 2 ) ⋯ ⊗ φ k l ( q p l − 2 ) ⊗ ⋯ ∣ g ^ ( q 1 , q 2 ) ∣ { P ^ } ∑ δ ( P ^ ) ⋯ ⊗ φ k i ( q p i ) ⊗ ⋯ ⊗ φ k j ( q p j ) ⊗ ⋯ ⊗ φ k k ⊗ ⋯ ⊗ φ k l ⊗ ⋯ ⟩ ( 用连续的相邻对换将上面的 φ k j 从自由度 q p j 移至 p l − 2 的位置,会多出一个 ( −1 ) ∑ a = j + 1 k − 1 n k a ( −1 ) ∑ a = k + 1 l − 1 n k a ) 2 N ( N − 1 ) N ! 1 ⟨ { P ^ } ∑ δ ( P ^ ) ⋯ ⊗ φ k i ⊗ ⋯ ⊗ φ k j ⊗ ⋯ ⊗ φ k k ( q p k − 2 ) ⋯ ⊗ φ k l ( q p l − 2 ) ⊗ ⋯ ∣ g ^ ( q 1 , q 2 ) ∣ { P ^ } ∑ δ ( P ^ ) ⋯ ⊗ φ k i ( q p i ) ⊗ ⋯ ⊗ φ k l ⊗ ⋯ ⊗ φ k k ⊗ ⋯ ⊗ φ k j ( q p l − 2 ) ⊗ ⋯ ⟩ ( − 1 ) ∑ a = j + 1 k − 1 n k a ( − 1 ) ∑ a = k + 1 l − 1 n k a ( 再用连续的相邻对换将上面的 φ k i 从自由度 q p i 移至 p k − 2 的位置,会多出一个 ( −1 ) ∑ a = i + 1 j − 1 n k a ( −1 ) ∑ a = j + 1 k − 1 n k a ) 2 N ( N − 1 ) N ! 1 ⟨ { P ^ } ∑ δ ( P ^ ) ⋯ ⊗ φ k i ⊗ ⋯ ⊗ φ k j ⊗ ⋯ ⊗ φ k k ( q p k − 2 ) ⋯ ⊗ φ k l ( q p l − 2 ) ⊗ ⋯ ∣ g ^ ( q 1 , q 2 ) ∣ { P ^ } ∑ δ ( P ^ ) ⋯ ⊗ φ k k ⊗ ⋯ ⊗ φ k l ⊗ ⋯ ⊗ φ k i ( q p k − 2 ) ⊗ ⋯ ⊗ φ k j ( q p l − 2 ) ⊗ ⋯ ⟩ ( − 1 ) ∑ a = j + 1 k − 1 n k a ( − 1 ) ∑ a = k + 1 l − 1 n k a ( − 1 ) ∑ a = i + 1 j − 1 n k a ( − 1 ) ∑ a = j + 1 k − 1 n k a 2 N ( N − 1 ) N ! 1 ( − 1 ) ∑ a = i + 1 j − 1 n k a ( − 1 ) ∑ a = k + 1 l − 1 n k a ⟨ { P ^ } ∑ δ ( P ^ ) φ k k ( q p 1 ) ⊗ φ k l ( q p 2 ) ∣ g ^ ( q 1 , q 2 ) ∣ { P ^ } ∑ δ ( P ^ ) φ k i ( q p 1 ) ⊗ φ k j ( q p 2 ) ⟩ { P ^ } ∑ ⟨ φ k 1 ( q p 1 ) ∣ φ k 1 ( q p 1 ) ⟩ ⋯ ⟨ φ k i ∣ φ k i ⟩ ⋯ ⟨ φ k j ∣ φ k j ⟩ ⋯ ⟨ φ k k ∣ φ k k ⟩ ⋯ ⟨ φ k l ∣ φ k l ⟩ ⋯ ⟨ φ k N + 2 ( q p N − 2 ) ∣ φ k N + 2 ( q p N − 2 ) ⟩ 2 N ( N − 1 ) N ! 1 ( − 1 ) ∑ a = i + 1 j − 1 n k a ( − 1 ) ∑ a = k + 1 l − 1 n k a ( N − 2 ) ! [ ⟨ φ k k φ k l ∣ g ^ ∣ φ k i φ k j ⟩ − ⟨ φ k k φ k l ∣ g ^ ∣ φ k j φ k i ⟩ + ⟨ φ k l φ k k ∣ g ^ ∣ φ k i φ k j ⟩ − ⟨ φ k l φ k k ∣ g ^ ∣ φ k j φ k i ⟩ ] ( − 1 ) ∑ a = i + 1 j − 1 n k a ( − 1 ) ∑ a = k + 1 l − 1 n k a [ ⟨ φ k k φ k l ∣ g ^ ∣ φ k i φ k j ⟩ − ⟨ φ k l φ k k ∣ g ^ ∣ φ k i φ k j ⟩ ] ( − 1 ) ∑ a = i + 1 j − 1 n k a ( − 1 ) ∑ a = k + 1 l − 1 n k a ( g k k k l , k i k j − g k l k k , k i k j ) ( 1 . 9 . 9 )
若采用粒子数表象,则如下:
⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ G ^ ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ = 1 2 ∑ α ′ β ′ ∑ α β g α ′ β ′ , α β ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ α ′ † C ^ β ′ † C ^ β C ^ α ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ = 1 2 ∑ α ′ β ′ ∑ α β g α ′ β ′ , α β ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ α ′ † C ^ β ′ † C ^ β C ^ α ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ δ α , k i δ β , k j δ α ′ , k k δ β ′ , k l + 1 2 ∑ α ′ β ′ ∑ α β g α ′ β ′ , α β ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ α ′ † C ^ β ′ † C ^ β C ^ α ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ δ α , k i δ β , k j δ α ′ , k l δ β ′ , k k + 1 2 ∑ α ′ β ′ ∑ α β g α ′ β ′ , α β ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ α ′ † C ^ β ′ † C ^ β C ^ α ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ δ α , k j δ β , k i δ α ′ , k k δ β ′ , k l + 1 2 ∑ α ′ β ′ ∑ α β g α ′ β ′ , α β ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ α ′ † C ^ β ′ † C ^ β C ^ α ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ δ α , k j δ β , k i δ α ′ , k l δ β ′ , k k = 1 2 g k k k l , k i k j ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ k k † C ^ k l † C ^ k j C ^ k i ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ + 1 2 g k l k k , k i k j ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ k l † C ^ k k † C ^ k j C ^ k i ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ + 1 2 g k k k l , k j k i ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ k k † C ^ k l † C ^ k i C ^ k j ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ + 1 2 g k l k k , k j k i ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ k l † C ^ k k † C ^ k i C ^ k j ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ = g k k k l , k i k j ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ k k † C ^ k l † C ^ k j C ^ k i ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ + g k l k k , k i k j ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ k l † C ^ k k † C ^ k j C ^ k i ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ = g k k k l , k i k j ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ k k † C ^ k l † C ^ k j C ^ k i ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ − g k l k k , k i k j ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ k k † C ^ k l † C ^ k j C ^ k i ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ = ( g k k k l , k i k j − g k l k k , k i k j ) [ ( − 1 ) ∑ a = 1 i − 1 n a ] ⋅ [ ( − 1 ) ∑ a = 1 i − 1 n a ( − 1 ) ∑ a = i + 1 j − 1 n a ] ⋅ [ ( − 1 ) ∑ a = 1 i − 1 n a ( − 1 ) ∑ a = i + 1 j − 1 n a ( − 1 ) ∑ a = j + 1 k − 1 n a ( − 1 ) ∑ a = k + 1 l − 1 n a ] ⋅ [ ( − 1 ) ∑ a = 1 i − 1 n a ( − 1 ) ∑ a = i + 1 j − 1 n a ( − 1 ) ∑ a = j + 1 k − 1 n a ] = ( g k k k l , k i k j − g k l k k , k i k j ) ( − 1 ) ∑ a = i + 1 j − 1 n k a ( − 1 ) ∑ a = k + 1 l − 1 n k a (1.9.10) \begin{aligned} & \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{G}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\=& \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\=& \frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \delta_{\alpha,k_i} \delta_{\beta,k_j} \delta_{\alpha',k_k} \delta_{\beta',k_l} \\ & \ +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \delta_{\alpha,k_i} \delta_{\beta,k_j} \delta_{\alpha',k_l} \delta_{\beta',k_k} \\ & \ +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \delta_{\alpha,k_j} \delta_{\beta,k_i} \delta_{\alpha',k_k} \delta_{\beta',k_l} \\ & \ +\frac{1}{2} \sum_{\alpha'\beta'} \sum_{\alpha\beta} g_{\alpha'\beta',\alpha\beta} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{\alpha'} \hat{C}^\dagger_{\beta'} \hat{C}_{\beta} \hat{C}_{\alpha}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \delta_{\alpha,k_j} \delta_{\beta,k_i} \delta_{\alpha',k_l} \delta_{\beta',k_k} \\=& \frac{1}{2} g_{k_k k_l,k_i k_j} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{k_k} \hat{C}^\dagger_{k_l} \hat{C}_{k_j} \hat{C}_{k_i}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\ & \ +\frac{1}{2} g_{k_l k_k,k_i k_j} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{k_l} \hat{C}^\dagger_{k_k} \hat{C}_{k_j} \hat{C}_{k_i}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\ & \ +\frac{1}{2} g_{k_k k_l,k_j k_i} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{k_k} \hat{C}^\dagger_{k_l} \hat{C}_{k_i} \hat{C}_{k_j}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\ & \ +\frac{1}{2} g_{k_l k_k,k_j k_i} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{k_l} \hat{C}^\dagger_{k_k} \hat{C}_{k_i} \hat{C}_{k_j}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\=& g_{k_k k_l,k_i k_j} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{k_k} \hat{C}^\dagger_{k_l} \hat{C}_{k_j} \hat{C}_{k_i}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\ & \ +g_{k_l k_k,k_i k_j} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{k_l} \hat{C}^\dagger_{k_k} \hat{C}_{k_j} \hat{C}_{k_i}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\=& g_{k_k k_l,k_i k_j} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{k_k} \hat{C}^\dagger_{k_l} \hat{C}_{k_j} \hat{C}_{k_i}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\ & \ -g_{k_l k_k,k_i k_j} \braket{\cdots,k_l,\cdots,k_k,\cdots,n_{k_j}=0,\cdots,n_{k_i}=0,\cdots |\hat{C}^\dagger_{k_k} \hat{C}^\dagger_{k_l} \hat{C}_{k_j} \hat{C}_{k_i}| \cdots,k_i,\cdots,k_j,\cdots,n_{k_k}=0,\cdots,n_{k_l}=0,\cdots} \\=& (g_{k_k k_l,k_i k_j}-g_{k_l k_k,k_i k_j}) \ [(-1)^{\sum_{a=1}^{i-1}n_a}] \cdot [(-1)^{\sum_{a=1}^{i-1}n_a} (-1)^{\sum_{a=i+1}^{j-1}n_a}] \cdot [(-1)^{\sum_{a=1}^{i-1}n_a} (-1)^{\sum_{a=i+1}^{j-1}n_a} (-1)^{\sum_{a=j+1}^{k-1}n_a} (-1)^{\sum_{a=k+1}^{l-1}n_a}] \cdot [(-1)^{\sum_{a=1}^{i-1}n_a} (-1)^{\sum_{a=i+1}^{j-1}n_a} (-1)^{\sum_{a=j+1}^{k-1}n_a}] \\=& (g_{k_k k_l,k_i k_j}-g_{k_l k_k,k_i k_j}) (-1)^{\sum_{a=i+1}^{j-1}n_{k_a}} (-1)^{\sum_{a=k+1}^{l-1}n_{k_a}} \end{aligned} \tag{1.9.10} = = = = = = = ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ G ^ ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ 2 1 α ′ β ′ ∑ α β ∑ g α ′ β ′ , α β ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ α ′ † C ^ β ′ † C ^ β C ^ α ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ 2 1 α ′ β ′ ∑ α β ∑ g α ′ β ′ , α β ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ α ′ † C ^ β ′ † C ^ β C ^ α ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ δ α , k i δ β , k j δ α ′ , k k δ β ′ , k l + 2 1 α ′ β ′ ∑ α β ∑ g α ′ β ′ , α β ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ α ′ † C ^ β ′ † C ^ β C ^ α ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ δ α , k i δ β , k j δ α ′ , k l δ β ′ , k k + 2 1 α ′ β ′ ∑ α β ∑ g α ′ β ′ , α β ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ α ′ † C ^ β ′ † C ^ β C ^ α ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ δ α , k j δ β , k i δ α ′ , k k δ β ′ , k l + 2 1 α ′ β ′ ∑ α β ∑ g α ′ β ′ , α β ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ α ′ † C ^ β ′ † C ^ β C ^ α ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ δ α , k j δ β , k i δ α ′ , k l δ β ′ , k k 2 1 g k k k l , k i k j ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ k k † C ^ k l † C ^ k j C ^ k i ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ + 2 1 g k l k k , k i k j ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ k l † C ^ k k † C ^ k j C ^ k i ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ + 2 1 g k k k l , k j k i ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ k k † C ^ k l † C ^ k i C ^ k j ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ + 2 1 g k l k k , k j k i ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ k l † C ^ k k † C ^ k i C ^ k j ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ g k k k l , k i k j ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ k k † C ^ k l † C ^ k j C ^ k i ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ + g k l k k , k i k j ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ k l † C ^ k k † C ^ k j C ^ k i ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ g k k k l , k i k j ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ k k † C ^ k l † C ^ k j C ^ k i ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ − g k l k k , k i k j ⟨ ⋯ , k l , ⋯ , k k , ⋯ , n k j = 0 , ⋯ , n k i = 0 , ⋯ ∣ C ^ k k † C ^ k l † C ^ k j C ^ k i ∣ ⋯ , k i , ⋯ , k j , ⋯ , n k k = 0 , ⋯ , n k l = 0 , ⋯ ⟩ ( g k k k l , k i k j − g k l k k , k i k j ) [ ( − 1 ) ∑ a = 1 i − 1 n a ] ⋅ [ ( − 1 ) ∑ a = 1 i − 1 n a ( − 1 ) ∑ a = i + 1 j − 1 n a ] ⋅ [ ( − 1 ) ∑ a = 1 i − 1 n a ( − 1 ) ∑ a = i + 1 j − 1 n a ( − 1 ) ∑ a = j + 1 k − 1 n a ( − 1 ) ∑ a = k + 1 l − 1 n a ] ⋅ [ ( − 1 ) ∑ a = 1 i − 1 n a ( − 1 ) ∑ a = i + 1 j − 1 n a ( − 1 ) ∑ a = j + 1 k − 1 n a ] ( g k k k l , k i k j − g k l k k , k i k j ) ( − 1 ) ∑ a = i + 1 j − 1 n k a ( − 1 ) ∑ a = k + 1 l − 1 n k a ( 1 . 9 . 1 0 )
可见两者结果完全一致。
碎碎念:终于!!!写完这两节真的废了很大的劲,这样具体的计算细节太多了,我实在没有能力写好,写明确。呜呜呜˃̣̣̥᷄⌓˂̣̣̥᷅~~ 所以,我认为以后再看上面的计算多半应该是看不懂的。到那个时候,可以自己回去再看看曾谨言的《量子力学 (卷 Ⅱ》的相应内容吧,那边写得还是详细。但其实用粒子数表象来推导算符的矩阵元的话,确实不算太困难,抓住一点不要犯错就行:玻色子一个态可以容纳多个粒子,但不同态的产生和湮灭算符具有对易关系;而费米子一个态只能容纳一个粒子,但不同态的产生和湮灭算符具有反对易关系。说白了就是要抓住 (1.6.18)(1.6.27 (1.7.15) 这几个式子。
# 例题:动能算符的粒子数表象形式\quad 在坐标表象中,N 个全同粒子体系的动能算符可以被写作:
T ^ = ∑ i = 1 N P ^ i 2 2 m = − ℏ 2 2 m ∑ i = 1 N ∇ i 2 (1.10.1) \hat{T} = \sum^N_{i=1} \frac{\hat{P}^2_i}{2m} = -\frac{\hbar^2}{2m} \sum^N_{i=1} \nabla_i^2 \tag{1.10.1} T ^ = i = 1 ∑ N 2 m P ^ i 2 = − 2 m ℏ 2 i = 1 ∑ N ∇ i 2 ( 1 . 1 0 . 1 )
而在粒子数表象中,它应被写作:
T ^ = ∑ α , β T α , β a ^ α † a ^ β (1.10.2) \hat{T} = \sum_{\alpha,\beta} T_{\alpha,\beta} \hat{a}^\dagger_\alpha \hat{a}_\beta \tag{1.10.2} T ^ = α , β ∑ T α , β a ^ α † a ^ β ( 1 . 1 0 . 2 )
我们具体计算一下它的矩阵元:
T α β = ⟨ φ α ∣ ( − ℏ 2 2 m ∇ 2 ) ∣ φ β ⟩ = − − ℏ 2 2 m ∫ d r ⃗ ( 1 V exp ( i k ⃗ α ⋅ r ⃗ ) ) ∗ ∇ 2 ( 1 V exp ( i k ⃗ β ⋅ r ⃗ ) ) = ℏ 2 k β 2 2 m 1 V ∫ d r ⃗ exp [ i ( k ⃗ β − k ⃗ α ) ⋅ r ⃗ ] = ℏ 2 k β 2 2 m δ α β (1.10.3) \begin{aligned} T_{\alpha\beta} &= \braket{\varphi_\alpha|(-\frac{\hbar^2}{2m}\nabla^2)|\varphi_\beta} \\&= -\frac{-\hbar^2}{2m} \int d\vec{r} \ \left(\frac{1}{\sqrt{V}} \exp(i\vec{k}_\alpha \cdot \vec{r})\right)^* \nabla^2 \left(\frac{1}{\sqrt{V}} \exp(i\vec{k}_\beta \cdot \vec{r})\right) \\&= \frac{\hbar^2 k^2_\beta}{2m} \frac{1}{V} \int d\vec{r} \exp[i(\vec{k}_\beta-\vec{k}_\alpha)\cdot \vec{r}] \\&= \frac{\hbar^2 k^2_\beta}{2m} \delta_{\alpha \beta} \end{aligned} \tag{1.10.3} T α β = ⟨ φ α ∣ ( − 2 m ℏ 2 ∇ 2 ) ∣ φ β ⟩ = − 2 m − ℏ 2 ∫ d r ( V 1 exp ( i k α ⋅ r ) ) ∗ ∇ 2 ( V 1 exp ( i k β ⋅ r ) ) = 2 m ℏ 2 k β 2 V 1 ∫ d r exp [ i ( k β − k α ) ⋅ r ] = 2 m ℏ 2 k β 2 δ α β ( 1 . 1 0 . 3 )
代入算符T ^ \hat{T} T ^ 的表达式后,我们得到:
T ^ = ∑ α , β ℏ 2 k β 2 2 m δ α β a ^ α † a ^ β = ∑ α ℏ 2 k α 2 2 m a ^ α † a ^ α (1.10.4) \hat{T} = \sum_{\alpha,\beta} \frac{\hbar^2 k^2_\beta}{2m} \delta_{\alpha \beta} \hat{a}^\dagger_\alpha \hat{a}_\beta = \sum_{\alpha} \frac{\hbar^2 k^2_\alpha}{2m} \hat{a}^\dagger_\alpha \hat{a}_\alpha \tag{1.10.4} T ^ = α , β ∑ 2 m ℏ 2 k β 2 δ α β a ^ α † a ^ β = α ∑ 2 m ℏ 2 k α 2 a ^ α † a ^ α ( 1 . 1 0 . 4 )
\quad \quad \quad \quad #######################\quad 这章的最后我要说明一下我的一个表达可能会出现的误区。在上面我一直说两种东西,一个是粒子数表象,一个是波函数坐标表象 (或者我会写成坐标表象或波函数表象)。但这样的写法或许不太好,因为我们知道,如果是两种表象的话,一定存在他俩之间的表象变化,那如果问他们之间的表象变化是什么呢,这是无法回答的。因为本身不应该用两种不同的表象来区分它们,更准确地来说应该是两种语言,一种是粒子数语言,另一种波函数坐标语言。只不过在不同的情况下,用哪种语言会更加方便而已。 #######################